Муромский институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

На правах рукописи

Denmapol

ДОКТОРОВ АНДРЕЙ НИКОЛАЕВИЧ

## ФОРМИРОВАТЕЛИ ВЫСОКОЧАСТОТНЫХ СИГНАЛОВ С ИСПОЛЬЗОВАНИЕМ КОПИЙ СПЕКТРА СИГНАЛА ЦИФРОВЫХ ВЫЧИСЛИТЕЛЬНЫХ СИНТЕЗАТОРОВ

05.12.04 - «Радиотехника, в том числе системы и устройства телевидения»

Диссертация

на соискание ученой степени кандидата технических наук

Научный руководитель: доктор технических наук, профессор, Ромашов Владимир Викторович

Владимир - 2018

# содержание

| ВВЕДЕНИЕ5                                                            |
|----------------------------------------------------------------------|
| ГЛАВА 1. АНАЛИЗ СПОСОБОВ ПОВЫШЕНИЯ ВЫХОДНОЙ ЧАСТОТЫ                  |
| ЦИФРОВЫХ ВЫЧИСЛИТЕЛЬНЫХ СИНТЕЗАТОРОВ ДЛЯ                             |
| ФОРМИРОВАНИЯ РАДИОСИГНАЛОВ11                                         |
| 1.1 Обзор цифровых вычислительных синтезаторов                       |
| и их основных характеристик11                                        |
| 1.2 Основные понятия и определения анализа шумовых характеристик     |
| формирователей сигналов16                                            |
| 1.3 Проблема повышения выходной частоты цифровых вычислительных      |
| синтезаторов когерентных систем22                                    |
| 1.4 Использование побочных компонентов спектра для повышения         |
| выходной частоты цифровых вычислительных синтезаторов 29             |
| 1.5 Выводы и постановка задачи исследования35                        |
| ГЛАВА 2. ТЕОРИЯ ПОСТРОЕНИЯ ФОРМИРОВАТЕЛЕЙ СИГНАЛОВ С                 |
| ПРИМЕНЕНИЕМ ОБРАЗОВ ОСНОВНОЙ ЧАСТОТЫ ЦИФРОВЫХ                        |
| ВЫЧИСЛИТЕЛЬНЫХ СИНТЕЗАТОРОВ37                                        |
| 2.1 Модели выходного сигнала цифрового вычислительного синтезатора,  |
| работающего на образах основной частоты37                            |
| 2.2 Анализ влияния ограничений параметров структурных звеньев        |
| цифровых вычислительных синтезаторов на параметры                    |
| выходного сигнала41                                                  |
| 2.3 Обобщенная схема формирователя сигналов с использованием образов |
| основной частоты цифровых вычислительных синтезаторов50              |
| 2.4 Передискретизация выходного сигнала цифрового вычислительного    |
| синтезатора53                                                        |
| 2.5 Алгоритм частотного планирования формирователей сигналов с       |
| использованием образов основной частоты цифровых вычислительных      |
| синтезаторов61                                                       |

| 2.6 Автоматизация частотного планирования формирователей сигналов с |
|---------------------------------------------------------------------|
| использованием образов основной частоты цифровых вычислительных     |
| синтезаторов67                                                      |
| 2.7 Выводы77                                                        |
| ГЛАВА З. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ШУМОВЫХ ХАРАКТЕРИСТИК                |
| ЦИФРОВЫХ ВЫЧИСЛИТЕЛЬНЫХ СИНТЕЗАТОРОВ НА ОБРАЗАХ                     |
| ОСНОВНОЙ ЧАСТОТЫ79                                                  |
| 3.1 Математическая модель спектральной плотности мощности           |
| фазовых шумов цифровых вычислительных синтезаторов для основной     |
| частоты выходного сигнала79                                         |
| 3.2 Модель спектральной плотности мощности фазовых шумов цифровых   |
| вычислительных синтезаторов на образах основной частоты83           |
| 3.3 Экспериментальная проверка математической модели шумовых        |
| характеристик цифровых вычислительных синтезаторов на образах       |
| основной частоты89                                                  |
| 3.4 Влияние умножителя тактовой частоты на шумовые характеристики   |
| формирователя с применением образов основной частоты цифровых       |
| вычислительных синтезаторов96                                       |
| 3.5 Влияние выходного умножителя частоты на уровень фазовых шумов   |
| формирователя сигналов с использованием образов основной частоты102 |
| 3.6 Влияние передискретизации выходного сигнала цифрового           |
| вычислительного синтезатора на спектральную плотность мощности      |
| фазовых шумов формирователей сигнала108                             |
| 3.7 Выводы114                                                       |
| ГЛАВА 4. ПРОЕКТИРОВАНИЕ ФОРМИРОВАТЕЛЕЙ СИГНАЛОВ                     |
| РАДИОСИСТЕМ С ИСПОЛЬЗОВАНИЕМ ОБРАЗОВ ОСНОВНОЙ ЧАСТОТЫ               |
| ЦИФРОВЫХ ВЫЧИСЛИТЕЛЬНЫХ СИНТЕЗАТОРОВ 116                            |
| 4.1 Определение параметров формирователей сигналов радиосистемы,    |
| использующей образы основной частоты цифровых вычислительных        |
| синтезаторов116                                                     |

| 4.2 Моделирование шумовых характеристик формирователей когерен | тных |
|----------------------------------------------------------------|------|
| сигналов с использованием образов основной частоты цифровых    |      |
| вычислительных синтезаторов                                    |      |
| 4.3. Экспериментальное исследование шумовых характеристик      |      |
| формирователей радиосигналов с использованием образов основной |      |
| частоты цифровых вычислительных синтезаторов                   | 129  |
| 4.4 Выводы                                                     | 133  |
| ЗАКЛЮЧЕНИЕ                                                     | 135  |
| СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ                       | 138  |
| ЛИТЕРАТУРА                                                     | 139  |
| ПРИЛОЖЕНИЕ                                                     | 160  |
|                                                                |      |

### введение

Проблема генерирования и формирования дискретного множества стабильных частот и сигналов в заданном диапазоне частотного спектра является крайне важной для многих областей радиоэлектроники: систем связи, радиолокации, радионавигации, радиоизмерительной техники, радиовещания, телевидения и других. В настоящее время в качестве формирователей сигналов широко применяются синтезаторы частот, представляющие собой автономные функциональнозаконченные устройства.

Существует несколько разновидностей синтезаторов частот. Первыми появились аналоговые системы прямого синтеза частот, при котором выходная частота получается из опорной посредством операций смешения, фильтрации, умножения и деления. Затем появились системы косвенного синтеза частот, основанные на использовании аналоговой системы фазовой автоподстройки частоты (ФАПЧ), которые впоследствии были вытеснены цифровыми синтезаторами на основе импульсной системы ФАПЧ. Развитие цифровой техники привело к появлению цифровых вычислительных синтезаторов (ЦВС) (сначала двухуровневых, а затем и многоуровневых), выходной сигнал требуемой формы и частоты которых получается из базового (тактового) сигнала с использованием цифровой обработки. В основе их работы заложен принцип прямого цифрового синтеза, разработанный еще в конце 70-х годов прошлого века.

### Степень разработанности темы:

Вопросам исследования ЦВС посвящены работы отечественных (В.Н. Кулешов, Б.Е. Кулешов, Я.Е. Зильберберг, В.И. Теаро, Н.П. Ямпурин, А.В. Пестряков, В.Н. Кочемасов, С.Я. Шишов, Л.А. Белов, Е.Б. Жалнин, П.А. Попов, В.В. Ромашов) и зарубежных авторов (V.F.Kroupa, Jouko Vankka, Y.H. Liu, Jon Bredeson, Micheal Parten, John Borrelli, Thomas M. Comberiate, J. P. Van't Hof, Laura B. Ruppalt, Keir C. Lauritzen, Salvador H. Talisa, David Brandon).

Современное развитие радиотехники сопровождается освоением все более высокочастотных диапазонов. В настоящий момент наиболее востребованными

являются диапазоны ультравысоких (300 МГц - 3 ГГц) и сверхвысоких частот (3 – 30 ГГц). В обозримой перспективе возможно широкое освоение диапазона крайне высоких частот (30 – 300 ГГц).

Актуальной и не до конца решенной на данный момент задачей для таких диапазонов частот является формирование дискретного множества стабильных частот с низким уровнем фазовых шумов для одноканальных и многоканальных когерентных систем. Примерами последних являются многоканальные когерентные системы разнесённых коммутируемых систем гражданского и военного оборудования высокого класса; гетеродины для испытания многокаскадных когерентных преобразователей в оборудовании военного назначения; формирователи диаграмм направленности коммерческих систем SDMA и др. Важность обеспечения когерентности синтезируемых сигналов для указанных систем обусловлена необходимостью обеспечения постоянного относительного фазового сдвига между формируемыми сигналами в любые моменты времени и при необходимости изменения фазовых соотношений между ними.

Системы прямого аналогового и косвенного синтеза частот на основе системы ФАПЧ частично позволяют решить эту задачу, однако, одним из их существенных недостатков остается невозможность получения высокой разрешающей способности сетки частот в широком частотном диапазоне. ЦВС, в отличие от других методов синтеза, позволяют получить высокое разрешение по частоте (до долей герц) и обладают низким уровнем фазовых шумов, но их выходная частота для интегральных микросхем на данный момент ограничена значением в 1500-1700 МГц, что затрудняет создание современных систем формирования когерентных сигналов на основе ЦВС в более высокочастотных диапазонах.

На данный момент известно несколько способов повышения выходной частоты ЦВС. Однако они обладают характерными недостатками, в частности, сопровождаются увеличением фазовых шумов и не всегда эффективны, что требует разработки нового метода решения обозначенной проблемы.

Особенностью прямого цифрового синтеза является то, что в спектре выходного сигнала цифро-аналогового преобразователя ЦВС присутствуют копии

спектра сигнала основной синтезируемой частоты - продукты зеркального отображения ее гармоник относительно частоты тактового сигнала. В англоязычной литературе данные побочные компоненты спектра имеют название images – имиджи, более точным вариантом перевода, передающим смысл термина, являются «образы». Использование указанных побочных компонентов выходного спектра ЦВС, лежащих за пределами частоты Найквиста, может позволить решить проблему ограничения максимальной выходной частоты синтезатора и роста фазовых шумов на ней. Данная идея была обозначена в работах R.I. Vinchentzio, V.F. Kroupa, а также в технической документации на ЦВС компании Analog Devices и является весьма перспективной. Однако она мало изучена и освещена в научной литературе, а также отсутствуют сведения о реальных устройствах, реализующих данный принцип.

**Целью диссертационной работы** является разработка и исследование формирователей высокочастотных когерентных сигналов, использующих копии спектра сигнала цифровых вычислительных синтезаторов.

Выполнение цели требует решения следующих задач:

- обосновать возможность использования копий спектра сигнала цифровых вычислительных синтезаторов для повышения выходных частот формирователей когерентных сигналов, разработать обобщенную структурную схему;

- разработать алгоритм и программное обеспечение для частотного планирования формирователей когерентных сигналов, использующих копии спектра сигнала цифровых вычислительных синтезаторов;

- на основе экспериментальных данных разработать математическую модель спектральной плотности мощности фазовых шумов цифровых вычислительных синтезаторов для частот образов;

 теоретически и экспериментально исследовать шумовые свойства формирователей когерентных сигналов, использующих копии спектра сигнала цифровых вычислительных синтезаторов.

Объектом исследования являются цифровые вычислительные синтезаторы.

**Предметом исследования** являются копии спектра сигнала цифровых вычислительных синтезаторов и их применение для синтеза сигналов.

Методология и методы исследования. Для решения поставленных в диссертационной работе задач использовались методы математического моделирования, автоматического управления, спектрального анализа, экспериментальных измерений. Моделирование и расчет проводились на ЭВМ с использованием программ MathCAD, MatLab и C++.

Научная новизна работы заключается в том, что:

- предложена обобщенная структурная схема формирователя когерентных сигналов, использующего копии спектра сигнала цифровых вычислительных синтезаторов для повышения выходной частоты;

 разработан алгоритм частотного планирования формирователей когерентных сигналов, в которых используются копии спектра сигнала цифровых вычислительных синтезаторов;

- впервые предложена и экспериментально подтверждена математическая модель спектральной плотности мощности фазовых шумов цифровых вычислительных синтезаторов, использующих копии спектра выходного сигнала, позволяющая проводить моделирование шумовых характеристик формирователей когерентных сигналов;

- получены результаты теоретического и экспериментального исследования шумовых характеристик разработанных формирователей когерентных сигналов, использующих копии спектра сигнала цифровых вычислительных синтезаторов.

**Теоретическая и практическая значимость** полученных в диссертационной работе результатов заключается в следующем:

- разработана обобщенная структурная схема формирователя когерентных сигналов, использующих копии спектра сигнала цифровых вычислительных синтезаторов, позволяющая более чем на порядок повысить выходную частоту устройства, и исключить выходные умножители частоты, либо уменьшить их количество и снизить коэффициент умножения до минимально возможного значения.

- разработано программное обеспечение для ЭВМ, позволяющие проводить частотное планирование формирователей когерентных сигналов, использующих копии спектра основной частоты цифровых вычислительных синтезаторов;

- на основе экспериментальных данных разработана математическая модель

спектральной плотности мощности фазовых шумов цифровых вычислительных синтезаторов, использующих копии спектра основной частоты, позволяющая на стадии проектирования с низкой погрешностью проводить оценку спектральной плотности мощности фазовых шумов разрабатываемых устройств;

- разработан формирователь когерентных сигналов, использующий копии спектра сигнала цифровых вычислительных синтезаторов для повышения выходной частоты и обладающий меньшим на 4-5 дБ уровнем фазовых шумов по сравнению с аналогичным устройством без использования образов.

Достоверность полученных результатов подтверждена экспериментальным исследованием спектральной плотности мощности фазовых шумов интегрального ЦВС AD9910 и формирователя когерентных сигналов на его основе при применении копий спектра сигнала основной частоты.

#### На защиту выносятся:

- Алгоритм частотного планирования формирователей когерентных сигналов, полученный в диссертации, позволяет рассчитать варианты частотного плана, с учетом условия фильтрации копий спектра основной частоты выходного сигнала цифровых вычислительных синтезаторов.

- Для теоретической оценки шумовых характеристик исследуемых формирователей сигналов необходимо использовать математическую модель спектральной плотности мощности фазовых шумов цифровых вычислительных синтезаторов, учитывающую изменение амплитуд копий спектра выходного сигнала от частоты.

- Результаты теоретического и экспериментального исследования формирователей высокочастотных когерентных сигналов, использующих копии спектра и передискретизацию выходного сигнала цифровых вычислительных синтезаторов свидетельствуют о снижении необходимого числа транзисторных каскадов выходного умножителя частоты и показывают возможность улучшения шумовых характеристик устройств на 4-5 дБ.

Апробация работы. Основные положения диссертационной работы обсуждались на следующих конференциях и семинарах: XVII Всероссийской научнотехнической конференции с международным участием "Современные проблемы ра-

диоэлектроники" (Красноярск, 2014); Третьей Всероссийской научноконференции АО «Муромский завод радиоизмерительных прибопрактической ров» «Радиолокационная техника: устройства, станции, системы РЛС - 2015», Муром, 9-10 июня 2015 г; 11-ой и 12-ой международных научно-технических конференциях "Перспективные технологии в средствах передачи информации, (Суздаль, 2015, 2017); 15-ой Международной конференции «Авиация и космонавтика – 2016» (Москва, 2016); Х Всероссийской конференция «Радиолокация и радиосвязь» (Москва, 2016); 7-ой Всероссийской конференции: "Радиоэлектронные средства получения, обработки и визуализации информации" (Москва, 2017); III-IX всероссийских научных Зворыкинских чтениях (Муром, 2011-2017); IX, XII международных IEEE Сибирских конференциях по управлению и связи (Красноярск, 2013, 2015); 24-ой международной IEEE Крымской конференции «СВЧ-техника и телекоммуникационные технологии» (Севастополь, 2014).

**Публикации.** По тематике диссертации опубликовано 27 работ, в том числе 7 статей в журналах перечня ВАК, 3 публикации, индексированные в международной реферативной базе Scopus, 15 тезисов докладов. Имеется 1 свидетельство о регистрации программы для ЭВМ.

Внедрение результатов работы. Результаты диссертационной работы внедрены в исследования по разработке и модернизации формирователей сигналов радиосистем по НИОКР на АО «Муромский завод радиоизмерительных приборов», в учебном процессе кафедры радиотехники Муромского института ФГБОУ ВО «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых», использованы при выполнении гранта РФФИ № 16-37-00299 мол\_а.

Структура и объем работы. Диссертация состоит из введения, четырех глав, заключения, списка используемой литературы и приложения. Общий объем работы составляет 162 страниц машинописного текста, включая 92 рисунка и 15 таблиц. Библиография содержит 157 наименований, в том числе 39 работ автора.

## ГЛАВА 1. АНАЛИЗ СПОСОБОВ ПОВЫШЕНИЯ ВЫХОДНОЙ ЧАСТОТЫ ЦИФРОВЫХ ВЫЧИСЛИТЕЛЬНЫХ СИНТЕЗАТОРОВ ДЛЯ ФОРМИРОВАНИЯ РАДИОСИГНАЛОВ

# 1.1 Обзор цифровых вычислительных синтезаторов и их основных характеристик

Под ЦВС в данной работе будет пониматься синтезатор многоуровневых сигналов на основе технологии прямого цифрового синтеза [1-6], выходной сигнал которого является ступенчатой аппроксимацией формируемого гармонического колебания [7]. Широко распространенная схема такого устройства на основе накапливающего сумматора приведена на рис.1.1.1.



Рисунок 1.1.1 - Структурная схема ЦВС на основе накапливающего сумматора

Синтезатор работает следующим образом [8]. Выходной квазигармонический сигнал формируется на выходе аналогового фильтра нижних частот (ФНЧ), сглаживающего ступенчатый сигнал цифро-аналогового преобразователя (ЦАП), приближая его форму к гармонической. На вход ЦАП поступает цифровой код, считываемый из постоянного запоминающего устройства (ПЗУ), в ячейках которого записаны значения коэффициентов формируемого сигнала. Адреса ячеек, из которых осуществляется считывание, формируются регистром накапливающего сумматора. На каждом такте работы синтезатора в данный регистр записывается сумма предыдущего кода, сформированного на его выходе, и кода частоты *K*, задающего величину постоянного приращения и подаваемого на вход регистра кода частоты. В результате выходной код регистра накапливающего сумматора является функцией, линейно нарастающей во времени. Все узлы ЦВС тактируются генератором опорной частоты (ГОЧ) [9].

В случаях, когда накапливающий сумматор используется для формирования кода фазы, его называют аккумулятором фазы. Структурная схема такого ЦВС приведена на рис. 1.1.2.



Рисунок 1.1.2 – Структурная схема ЦВС на основе аккумулятора фазы

Постоянная добавка, которая используется при работе аккумулятора фазы, представляет собой приращение фазы за один такт работы устройства. Чем быстрее изменяется фаза во времени, тем выше частота генерируемого сигнала. Поэтому значение приращения фазы фактически является кодом выходной частоты синтезатора [10].

ЦВС могут иметь различную практическую реализацию: на дискретных логических элементах, программируемых логических интегральных схемах, в интегральном исполнении в виде отдельных микросхем [11].

В настоящее время большинство выпускаемых синтезаторов – интегральные. Микросхемы ЦВС производятся компаниями Analog Devices (США) [12], Qualcomm (США) [13], НПЦ «Элвис» (Россия)[14], XILINX (США), Euvis (США), GigabitLogic, Intersil (США) и некоторыми другими.

Во многих интегральных ЦВС имеется дополнительный встроенный умножитель тактовой частоты (УЧ) на ФАПЧ (рис. 1.1.3) с коэффициентом умножения  $n_1$ , который позволяет использовать в качестве ГОЧ широко распространенные кварцевые генераторы с частотами порядка десятков мегагерц [15].



Рисунок 1.1.3 - Структурная схема интегрального ЦВС со встроенным умножителем тактовой частоты на ФАПЧ

Основными характеристиками ЦВС являются[16-20]:

Максимальная синтезируемая частота, которая, исходя из теоремы Котельникова, не должна превышать половину тактовой частоты, составляющей для современных интегральных ЦВС 3500 МГц [12]. На практике же ее ограничивают значением в 25-40% от тактовой для улучшения фильтрации паразитных спектральных составляющих. В общем случае частота формируемого колебания синтезатора  $f_{ЦBC}$  и тактовая частота  $f_T$  ГОЧ находятся в дробном соотношении, определяемом кодом частоты и разрядностью аккумулятора фазы *р* 

$$f_{\mu BC} = \frac{K f_T}{2^p} = K_{\mu BC} f_T, \qquad (1.1.1)$$

где *К<sub>ЦВС</sub>* – коэффициент передачи ЦВС.

*Диапазон синтезируемых частот,* составляющий область от 0 Гц до максимальной синтезируемой частоты.

Шаг сетки частот (дискретность установки частоты), представляющий собой частотный интервал между соседними значениями частоты, входящими в дискретное множество возможных значений выходного колебания ЦВС, который определяется разрядностью и основанием используемой системы счисления (обычно двоичная или десятичная) и может составлять доли герц

$$\Delta f = \frac{f_T}{2^p}. \tag{1.1.2}$$

Время переключения (перестройки) между частотами, представляющее собой интервал времени от момента окончания команды на изменение частоты в устройстве управления синтезатора до момента окончания переходного процесса установления нового значения частоты. Для современных ЦВС время переключения частоты на новую имеет крайне малую величину (единицы – десятки наносекунд, что сравнимо с двумя-тремя периодами тактовой частоты), определяемую типом и скоростью цифрового интерфейса управления синтезатора.

*Нестабильность частоты* характеризует изменение частоты выходного сигнала ЦВС во времени и подразделяется на долговременную и кратковременную. Так как ЦВС является одноопорным синтезатором частоты (все узлы тактируются одним генератором), то его относительная нестабильность, вызванная медленным дрейфом частоты и влиянием дестабилизирующих факторов (в основном температуры и нестабильности напряжения питания), в целом определяется относительной нестабильностью ГОЧ.

Спектральные характеристики показывают степень отличия спектра реального выходного колебания синтезатора от спектра идеального гармонического сигнала. Спектр выходного сигнала ЦВС содержит шумовую и дискретную составляющую. Шумовая непрерывная составляющая определяется собственными шумами ЦВС и шумами квантования ЦАП. Дискретная часть спектра включает в себя гармоники основной частоты ЦВС, комбинационные составляющие, а также множество ПСС, образующихся в результате усечения кода фазы, некратности входной и выходной частот ЦВС, а также воздействия на синтезатор дестабилизирующих факторов. Предельное значение ПСС для современных ЦВС составляет не более минус 80 дБ относительно несущей частоты, что несколько хуже, чем для аналоговых систем и синтезаторов с ФАПЧ и определяется параметрами ЦВС - разрядностями аккумулятора фазы, ПЗУ и ЦАП, а также нелинейностью амплитудной характеристики ЦАП.

Основными преимуществами ЦВС перед другими методами синтеза являются[21-32]:

- цифровая обработка позволяет существенно повысить точность и качество синтезируемого сигнала, в результате чего частота, амплитуда и фаза сигнала в любой момент времени точно известны;

- высокое разрешение по частоте и фазе, управление которыми осуществляется в цифровом виде;

- быстрый переход на новую частоту (или фазу), перестройка по частоте без разрыва фазы, выбросов и других аномалий, связанных с переходными процессами;

- архитектура устройств, основанная на ЦВС, исключает необходимость применения точной подстройки опорной частоты ввиду крайне малого шага перестройки синтезатора,

- цифровой интерфейс позволяет легко реализовать микроконтроллерное управление;

- ЦВС практически не подвержены температурному дрейфу и старению элементов. Единственным элементом, который обладает свойственной аналоговым схемам нестабильностью, является ЦАП;

- архитектура ЦВС позволяет значительно снизить затраты на их изготовление.

Сфера применения ЦВС для формирования различных сигналов достаточно широка [33-42]. Проводятся исследования оптимизации архитектуры ЦВС [43-61] с целью уменьшения ПЗУ и увеличения быстродействия.

К основным недостаткам ЦВС, ограничивающим их применение в настоящий момент, относят предел синтезируемой частоты в 1500-1700 МГц и наличие в спектре синтезируемого сигнала дискретных паразитных спектральных составляющих.

## 1.2 Основные понятия и определения анализа шумовых характеристик формирователей сигналов

Качественным показателем устройств генерирования и формирования сигналов и, соответственно, синтезаторов частот является стабильность частоты, определяющая то, насколько точно данное устройство может воспроизводить одну и ту же частоту в заданном временном интервале.

Стабильность частоты определяется двумя составляющими: долговременной и кратковременной. Долговременная стабильность характеризует медленные изменения частоты, происходящие в течение длительного временного интервала: отношение ухода частоты к ее номинальному значению за день, месяц, год. Кратковременная стабильность — это изменения номинального значения несущей частоты за время, не превышающее нескольких секунд.

Любой источник сигнала имеет определенную нестабильность частоты, проявляющуюся в виде паразитной фазовой модуляции случайного характера, ухудшающие спектральную чистоту данного сигнала. Одним из важнейших критериев оценки стабильности частоты является фазовый шум, исследования которого представляют сложную и самостоятельную задачу, поскольку спектр фазовых шумов сгенерированного колебания при прохождении через узлы устройства может существенно видоизменяться [62-70].

Существует несколько подходов к количественной оценке фазовых шумов, но наиболее широко распространённой мерой, характеризующей их уровень, является спектральная плотность мощности (СПМ)  $S\varphi(F)$  в заданной полосе частот, характеризуемая отношением мощности фазовых шумов на частоте F одной боковой полосы в полосе частот 1 Гц к мощности сигнала. В международных стандартах принято указывать не СПМ самих фазовых шумов, а выраженный в децибелах относительный уровень СПМ шумовой части энергетического спектра выходного колебания при отстройках от несущей, равных F по абсолютному значению. Эту величину называют СПМ фазового шума в одной боковой полосе, она указывается в справочных данных и измеряется в дБ/Гц. Математически СПМ фазовых шумов можно представить в виде степенной модели:

$$S_{\alpha}(F) = h_{\alpha}F^{\alpha}, \qquad (1.2.1)$$

где  $h_a$  - постоянная, служащая мерой уровня фазового шума; F – отстройка частоты от несущей.

Фазовые шумы возникают в различных элементах формирователей — в резисторах, конденсаторах, диодах, транзисторах и т.д. Относительно несложен анализ фазовых шумов на частотах выше 5 кГц, где преобладают шумы дробового эффекта и тепловые шумы. На частотах ниже 5 кГц уровень экспериментально наблюдаемых шумов превосходит уровень тепловых шумов и шумов дробового эффекта и изменяется обратно пропорционально частоте.

На рис. 1.2.1 в двойном логарифмическом масштабе представлены степенные функции, по наклону которых можно определить виды конкретных фазовых шумов [71].



Рисунок 1.2.1 - СПМ фазовых шумов вблизи несущей частоты

В области частот, близкой к несущей, преобладают частотные шумы случайных блужданий, связанные с воздействием на электронные компоненты устройства дестабилизирующих факторов. Источниками частотного фликкерного шума служат активные элементы и резонаторы генераторов. Белый частотный шум вызывается наличием источников аддитивного белого шума, действующих внутри контура обратной связи генератора, например, теплового шума. Фазовый фликкерный шум обычно обусловлен шумящими электронными узлами (выходными усилителями или умножителями частоты). Белый фазовый шум обычно вызывается источниками аддитивного белого шума, внешними по отношению к цепи обратной связи генератора.

При  $F \rightarrow 0$  предел измерения СПМ фазовых шумов не выявлен из-за того, что для экспериментального измерения величины медленных уходов частоты нужно время, обратно пропорциональное частоте отстройки. Например, для измерения  $S\varphi(F)$  на частоте  $10^{-6}$  Гц, необходимо производить непрерывное накопление и усреднение данных на протяжении 2 лет. Поэтому нижняя граница измерений составляет обычно 1 или 10 Гц.

На рис. 1.2.2 в качестве примера приведены экспериментальные шумовые характеристики ЦВС AD9910 [72].



Рисунок 1.2.2 – СПМ фазовых шумов ЦВС AD9910 при тактовой частоте

#### 1 ГГц

Для экспериментального измерения СПМ фазовых шумов используется несколько методов, наиболее широко распространёнными из которых являются три: прямое измерение, метод фазового детектора и двухканальная взаимная корреляция [73]. Метод прямого измерения выполняет измерение фазового шума в присутствии сигнала несущей, тогда как два других метода предполагают удаление сигнала несущей (демодуляцию) перед измерением фазового шума.

Метод прямого измерения является самым простым и удобным способом быстрой и качественной оценки источников сигналов с относительно высоким уровнем фазовых шумов. Структурная схема устройства, реализующего данный принцип, приведена на рис. 1.2.3.



Рисунок 1.2.3 - Структурная схема устройства, реализующего метод прямого измерения фазовых шумов

Метод основан на том, что сигнал от измеряемого устройства (ИУ) подаётся на анализатор спектра, который настроен на частоту данного сигнала и выполняет непосредственное измерение относительной СПМ его фазовых шумов.

Поскольку СПМ фазового шума измеряется в присутствии сигнала несущей, то возможности этого метода могут существенно ограничиваться динамическим диапазоном анализатора спектра. Кроме того, анализатор спектра измеряет суммарную мощность шума без разделения его на амплитудный и фазовый.

*Метод фазового детектора* позволяет отделить фазовый шум от амплитудного. Фазовый детектор преобразует разность фаз двух входных сигналов в напряжение. В случае, когда разность фаз составляет 90°, то выходное напряжение детектора равно нулю. Любые отклонения фазы относительно разности 90° вызывают изменения напряжения на выходе детектора.

Развитием данного принципа являются метод с использованием опорного источника и метод частотного дискриминатора.

На рис. 1.2.4 изображена структурная схема, иллюстрирующая метод опорного источника, основу которого составляет двойной балансный смеситель, используемый в качестве фазового детектора.



Рисунок 1.2.4 – Структурная схема, иллюстрирующая принцип метода опорного источника

Метод реализуется следующим образом. Используются два сигнала (от измеряемого устройства и опорного источника), поступающие на входы фазового детектора (ФД). Опорный источник управляется так, чтобы его сигнал имел такую же несущую частоту, что и сигнал измеряемого устройства, но со сдвигом фазы на 90°. Сигнал суммарной частоты на выходе ФД фильтруется в фильтре нижних частот (ФНЧ), а сигнал разностной частоты, равной 0 Гц, создаёт на выходе напряжение постоянного тока со средним значением 0 В. На это напряжение постоянного тока накладывается переменная составляющая напряжения, пропорциональная сумме среднеквадратических значений шумовых вкладов двух входных сигналов. Выходной сигнал в модуляционной полосе обычно усиливается в малошумящем усилителе (МШУ) и подаётся на вход анализатора спектра, работающего в полосе модулирующего сигнала.

Метод с использованием опорного источника обеспечивает самую высокую чувствительность и самое широкое перекрытие полосы измерения (например, диапазон частотной отстройки от 0,01 Гц до 100 МГц). Кроме того, этот метод не чувствителен к амплитудному шуму и допускает слежение за сигналами дрейфующих источников. К недостаткам этого метода относится необходимость иметь спектрально чистый, электронно-перестраиваемый опорный источник, а при исследовании источников с большим дрейфом частоты - опорный источник с широким диапазоном настройки.

Метод частотного дискриминатора является разновидностью метода фазового детектора с тем отличием, что здесь не требуется опорный источник. Он используется, когда измеряемое устройство является источником с высоким уровнем фазового шума. Рис. 1.2.5 иллюстрирует принцип метода частотного дискриминатора, использующего линию задержки.



Рисунок 1.2.5 - Структурная схема, иллюстрирующая метод частотного дискриминатора

В данном методе сигнал от измеряемого устройства разделяется на два канала: в одном канале он задерживается относительно другого и отклонения частоты преобразуются в отклонения фазы, а в другом канале с помощью фазовращателя устанавливается квадратурный фазовый сдвиг. Затем фазовый детектор преобразует отклонения фазы в напряжение, которое затем интерпретируется анализатором спектра в полосе модулирующего сигнала как частотный шум, который затем преобразуется в значения фазового шума.

*Метод двухканальной взаимной корреляции* использует комбинацию из двух одинаковых одноканальных систем опорных источников и выполняет операции взаимной корреляции между выходными сигналами каждого канала, как показано на рис. 1.2.6.



Рисунок 1.2.6 - Структурная схема реализации метода двухканальной взаимной корреляции

Шумы измеряемого устройства в каждом канале обработки когерентны, и операция взаимной корреляции не влияет на их вклад в результат измерения, тогда как собственные шумы каждого канала не когерентны, и операция взаимной корреляции уменьшает их суммарный вклад в результат измерения.

Данный метод позволяет достичь наивысшей чувствительности, не требуя исключительно высоких характеристик аппаратных компонентов. Однако с ростом числа корреляций снижается скорость измерений.

# 1.3 Проблема повышения выходной частоты цифровых вычислительных синтезаторов когерентных систем

Синтезаторы частот на основе прямого аналогового и косвенного методов синтеза на основе системы ФАПЧ не позволяют получить высокую разрешающую способность сетки когерентных синтезируемых частот в широком частотном диапазоне. В связи с этим в настоящее время для построения когерентных формирователей сигналов и, в частности, многоканальных, широко применяются ЦВС [74-93]. На рисунке 1.3.1 приведена обобщенная структурная схема многоканальной радиосистемы формирования когерентных сигналов, построенная с использованием интегральных микросхем ЦВС.



Рисунок 1.3.1 – Обобщенная структурная схема многоканальной радиосистемы формирования когерентных сигналов

На схеме приняты следующие обозначения:

 $V Y I_1 ... V Y I_k - умножители опорной частоты с коэффициентами умножения <math>n_{I_1} ... n_{I_k}$ ;

 $f_{1\min}...f_{1\max}, f_{2\min}...f_{2\max}, ...f_{k\min}...f_{k\max}, -$  диапазоны сеток частот выходных сигналов формирователей 1 - k;

 $\Delta f_1, \Delta f_2, ..., \Delta f_k$  – шаги сеток частот выходных сигналов формирователей;

 $V42_1..V42_k$  – умножители частоты выходного сигнала с коэффициентами умножения  $n_2_1..n_2_k$ .

Система работает следующим образом. ГОЧ представляет собой, как правило, кварцевый автогенератор, создающий сигнал с высокостабильной частотой порядка единиц – десятков МГц. Для увеличения данной частоты, а, следователь-

но, и тактовых частот цифровых формирователей, применяются умножители опорной частоты. Каждый ЦВС цифрового формирователя создает на своем выходе синусоидальный сигнал с частотой из соответствующего диапазона сеток частот  $f_{\min} \dots f_{\max}$ , и шагом  $\Delta f$ . Далее частоты выходных сигналов каждого ЦВС умножаются пропорционально коэффициентам  $n_{2_1}$ , ...,  $n_{2_k}$  соответствующих умножителей частоты.

Ограничение максимального значения синтезируемой частоты ЦВС затрудняет создание современных систем формирования стабильных частот и сигналов на их основе в перспективных диапазонах УВЧ и СВЧ. В настоящее время данная проблема решается несколькими способами - рис. 1.3.2. Однако не все из данных способов пригодны для формирования когерентных сигналов.



Рисунок 1.3.2 - Декомпозиция методов повышения выходной частоты ЦВС

1. Разработка интегральных ЦВС с более высокими значениями тактовой частоты. В табл. 1.2.1 в качестве примера приведены справочные данные, иллюстрирующие эволюцию интегральной технологии ЦВС фирмы Analog Devices в период с 2004 по 2012 годы.

Из представленной таблицы наглядно видно, что технологии интегральных ЦВС в последние годы наряду с постепенным повышением разрядности ЦАП развиваются по пути увеличения тактируемых частот от сотен мегагерц до СВЧ диапазона.

| Модель ЦВС | Максимальная<br>тактовая частота,<br>МГц | Максимальная<br>потребляемая<br>мощность, Вт | Разрядность<br>ЦАП | Год разра-<br>ботки |
|------------|------------------------------------------|----------------------------------------------|--------------------|---------------------|
| AD9850     | 125                                      | 0,48                                         | 10                 | 2004                |
| AD9854     | 300                                      | 4,2                                          | 12                 | 2006                |
| AD9859     | 400                                      | 0,18                                         | 10                 | 2004                |
| AD9911     | 500                                      | 0,35                                         | 10                 | 2006                |
| AD9910     | 1000                                     | 0,9                                          | 14                 | 2007                |
| AD9915     | 2500                                     | 2,8                                          | 12                 | 2012                |
| AD9914     | 3500                                     | 3,1                                          | 12                 | 2012                |

Таблица 1.3.1 – Этапы развития интегральных ЦВС фирмы Analog Devices

Однако дальнейшее развитие интегральных ЦВС в сторону увеличения тактовых частот сопряжено с трудностями, характерными для всей интегральной технологии в целом. Это связано с тем, что имеются физические пределы для традиционной интегральной технологии: удельное энерговыделение (ограничение на размеры проводников в интегральных микросхемах); размеры кристалла микросхемы должны быть соизмеримы с длиной волны используемого колебания в целях исключения задержек в прохождении сигнала внутри микросхемы. Это, а также и многое другое, затрудняет возможность построения интегральных ЦВС с более высокими тактовыми частотами.

2. Применение дискретных умножителей выходной частоты ЦВС на транзисторах. Данный метод основан на увеличении выходной частоты ЦВС с помощью ее непосредственного умножения – рис. 1.3.3. В качестве активных элементов современных умножителей частоты формирователей сигналов, как правило, используются биполярные либо полевые транзисторы. Основные преимущества данного метода – простота формирования выходного сигнала, когерентного исходному сигналу опорной частоты. Поэтому данная схема достаточно широко распространена.



Рисунок 1.3.3 – Обобщенная структурная схема формирователя сигналов с умножением выходной частоты ЦВС на транзисторах

Формирователь сигналов функционирует следующим образом. Высокостабильный сигнал ГОЧ поступает на встроенный умножитель тактовый частоты УЧ1 на основе петли ФАПЧ, где преобразуется до максимально возможного значения и поступает на ЦВС. Выходной сигнал синтезатора подается на транзисторный умножитель УЧ2, где преобразуется до значения требуемой формируемой частоты.

Выходной умножитель частоты может быть также выполнен в виде нескольких транзисторных каскадов, включенных последовательно. С точки зрения снижения энергетических затрат, а также улучшения отношения сигнал/шум целесообразно выбирать коэффициенты умножения  $n_2$ , равные двум или трем. При этом обеспечение точности формируемой частоты и ее разрешения остается за ЦВС, которое даже после значительного умножения сохраняется крайне малым.

Частоту выходного сигнала формирователя с выходным умножителем частоты ЦВС в виде транзисторных каскадов можно выразить следующим образом

$$f_{\phi} = n_1 f_{\Gamma O \Psi} K_{\mu B C} n_2, \qquad (1.3.1)$$

Максимальная частота такого формирователя достигается при значении  $n_1 f_{_{FOY}} = f_{_{TMAKC}}$ , которому соответствует коэффициент передачи ЦВС  $K_{_{UBC}} \le 0,45$ .

Достоинствами данного способа повышения выходной частоты ЦВС является когерентность, возможность существенного увеличения частот формируемых сигналов и малая инерционность транзисторных каскадов умножения частоты.

К основным недостаткам рассмотренного метода относятся дискретность возможных коэффициентов умножения; их кратность числам 2, 3, 5; а также сложность получения некоторых коэффициентов умножения (например, 7, 11, 13 и др.) ввиду существенного снижения КПД. Кроме того, транзисторные умножители обладают собственным уровнем фазовых шумов, а фазовые шумы предыдущих каскадов формирователя возрастают пропорционально квадрату коэффициента умножения последующих каскадов УЧ2.

3. Использованием умножителей выходной частоты ЦВС на основе петли ФАПЧ. Простейшая схема такого формирователя сигналов приведена на рис. 1.3.4.



Рисунок 1.3.4 – Структурная схема формирователя сигналов с ЦВС и умножением его выходной частоты петлей ФАПЧ

Принцип работы устройства аналогичен предыдущему случаю, только вместо УЧ2 использована петля ФАПЧ. Кроме того, поскольку выходная частота современных ЦВС может быть значительно выше максимальной частоты сравнения фазового детектора петли ФАПЧ, которая не превышает 125 МГц, то в ней предусмотрен предварительный делитель частоты с коэффициентом деления  $N_1$  [94-102].

Общий коэффициент умножения петли ФАПЧ определяется отношением  $n_2 = N_2 / N_1$  (где  $N_2$  - коэффициент деления в петле обратной связи ФАПЧ). Синтезируемая частота сигнала такого формирователя также определяется как

$$f_{\phi} = n_1 f_{\Gamma O \Psi} K_{\mu B C} n_2. \qquad (1.3.2)$$

К достоинствам данного метода относятся возможность получения больших значений коэффициентов умножения, которые могут быть дробными, а также фильтрация петлей ФАПЧ паразитных спектральных составляющих, присутствующих в спектре выходного сигнала ЦВС. Недостатками указанного способа повышения выходной частоты ЦВС является увеличение длительности переходного процесса при переключении ЦВС либо ФАПЧ на новую синтезируемую частоту, возможность потери устойчивости, а также наличие собственных фазовых шумов петли автоподстройки и умножение ей фазовых шумов предыдущих каскадов.

4. Преобразование выходной частоты ЦВС вверх. Структурная схема устройства формирования сигналов, реализующего данный принцип, приведена на рис. 1.3.5.



Рисунок 1.3.5 – Структурная схема формирователя сигналов с преобразованием выходной частот ЦВС вверх

Расширение частотного диапазона ЦВС с помощью данного метода достигается за счет смешения выходной частоты синтезатора  $f_{LBC}$  с сигналом высокочастотного генератора подставки (ГП) с частотой  $f_{\Gamma}$ . В результате на выходе смесителя частот (См) присутствуют спектральные компоненты с комбинационными частотами, одну из которых выделяют полосовым фильтром (ПФ).

Главным достоинством указанного метода является относительная простота его реализации. К недостаткам следует отнести нарушение когерентности входных сигналов смесителя, вследствие использования двух различных генераторов (ГОЧ и генератора подставки), а также увеличение уровня фазовых шумов всего формирователя за счет введения в схему дополнительных источников фазовых шумов – смесителя и генератора подставки.

Таким образом, имеется четыре метода повышения выходной частоты формирователей сигналов на основе ЦВС, каждый из которых обладает характерными недостатками: возможности совершенствования интегральных технологий ограничены, а использование преобразования выходной частоты ЦВС вверх или ее последующего умножения транзисторными каскадами либо петлей ФАПЧ в первую очередь негативно сказывается на уровне фазовых шумов всего формирователя. Однако наиболее часто для формирования когерентных сигналов приходится использовать умножение частоты выходного сигнала ЦВС дискретными умножителями частоты, несмотря на присущие данной схеме очевидные недостатки, особенно при больших значениях коэффициента умножения.

## 1.4 Использование побочных компонентов спектра для повышения выходной частоты цифровых вычислительных синтезаторов

Ранее было показано, что спектр выходного сигнала ЦВС помимо спектральной компоненты основной синтезируемой частоты содержит ее высшие гармоники, вызванные наличием нелинейности амплитудной характеристики ЦАП. Вследствие эффекта дискретизации в выходном спектре ЦВС также образуются дополнительные побочные комбинационные спектральные составляющие, представляющие собой зеркальное "отображение" указанных гармоник относительно тактовой частоты [103].

Существует множество названий данных побочных компонент спектра. В англоязычной литературе принято обозначение images – «имиджи» основной синтезируемой частоты [7, 103]. В русскоязычной литературе встречается другое обозначение – копии спектра [104]. Однако, наиболее удачным вариантом перевода можно назвать термин образы [105]. Частоты образов определяются как

$$f_{o\delta p} = \left| nf_T + kf_{\ LBC} \right|, \qquad (1.4.1)$$

где *n* = ...-3, -2, -1, 0, 1, 2, 3... – номер образа, *k* = 1, 2, 3... - номер гармоники.

Компоненты спектра, для которых номер образа n принимает отрицательные значения, являются обратными по отношению к основной частоте ЦВС и называются отрицательными образами основной частоты. Соответственно, остальные компоненты спектра, вызванные работой ЦАП, для которых n принимает по-

ложительные значения, называются положительными образами основной частоты ЦВС.

Огибающая спектра основного сигнала ЦАП ЦВС и его образов изменяется по закону sin(x)/x (синус Котельникова) и принимает нулевые значения на частотах, кратных тактовой, а амплитуды этих компонентов оказываются промодулированными весовой функцией

$$A(f_{\rm GBLX}) = \frac{\sin(\pi \cdot f_{\rm GBLX}/f_T)}{(\pi \cdot f_{\rm GBLX}/f_T)}, \qquad (1.4.2)$$

На рис. 1.4.1 схематично представлен спектр выходного сигнала ЦАП ЦВС с тактовой частотой 100 МГц.



тактирования 100 МГц

Из рисунка видно, что основная спектральная компонента синтезируемого сигнала располагается на частоте 30 МГц, а ее образы на частотах 70 и 130 МГц соответственно. Второй гармонике соответствует частота 60 МГц, первому положительному образу - частота 160 МГц, "минус" первому - частота 40 МГц; третьей гармонике соответствует частота 90 МГц, ее "минус" первому образу - частота 10 МГц, и наконец, четвертой гармонике соответствует частота 120 МГц, ее "минус" первому образу - частота 20 МГц и "минус" второму образу - частота 80 МГц. В подавляющем большинстве случаев от данных паразитных спектральных составляющих избавляются с помощью фильтров низкой частоты (ФНЧ), через которые пропускают выходной сигнал ЦАП (рис. 1.1.1, 1.1.2). Однако существует возможность использования образов для повышения частоты выходного сигнала ЦВС и формирователей на их основе.

Для выделения необходимого побочного компонента с частотой соответствующего образа необходимо использовать полосовой фильтр (ПФ) [106, 107]. Структурная схема устройства формирования сигналов, реализующего данный принцип, приведена на рис. 1.4.2.



Рисунок 1.4.2 - Структурная схема формирователя сигналов с использованием образов частот ЦВС

Необходимо учитывать, что уровень гармоник основного сигнала ЦВС определяется характером нелинейности амплитудной характеристики его ЦАП, которая увеличивается с ростом числа разрядов преобразователя. У современных ЦАП с разрядностями до 8 бит нелинейность амплитудной характеристики практически отсутствует, а при разрядностях 10-14 бит проявляются незначительные отклонения от теоретической линейной характеристики. В результате оказывается, что уровень гармоник в спектре выходного сигнала ЦАП ЦВС существенно меньше уровня основной спектральной компоненты [108, 109].

Данный вывод позволяет рекомендовать использовать для повышения выходной частоты ЦВС только образы основной спектральной компоненты, поскольку амплитуды гармоник и тем более их образов будут близки к уровню других паразитных спектральных составляющих и недостаточными для дальнейшего выделения и преобразования. На рис. 1.4.3 приведен пример использования положительного первого образа основной частоты ЦВС 150 МГц при частоте тактирования 768 МГц.

Кроме того, частотная характеристика ЦАП вида sinc(x) не является плоской, что вызывает уменьшение амплитуд образов по сравнению с основной выходной частотой ЦВС. В результате отношение сигнал/шум при использовании побочных компонентов спектра ухудшается. Например, на частоте 40% от тактовой ослабление амплитуды огибающей составляет 2,42 дБ. Данный эффект в некоторой мере можно исправить применением высококачественных ЦАП или использованием специальных приемов для подавления выбросов (например, инверсного фильтра sinc(x)).



Рисунок 1.4.3 - Пример использования образов основной частоты ЦВС

С энергетической точки зрения, а также для обеспечения лучшей фильтрации рекомендуется, чтобы коэффициент передачи ЦВС *К*<sub>цвс</sub> принимал значения в пределах

$$0,15 \le K_{UBC} \le 0,35, \tag{1.4.3}$$

В соответствии с данным условием, расчет рабочих частот звеньев формирователей сигналов с ЦВС на образах является достаточно сложной задачей [110]. Из множества вариантов частотного планирования необходимо выбрать случаи, когда возможно применение образов основной частоты. В случае, когда требуется перестройка ЦВС по частоте в некотором диапазоне частотного спектра, необходимо также внимательно проанализировать его выходной спектр и обозначить требования к используемому полосовому фильтру.

Весьма полезной особенностью использования образов основной частоты ЦВС является тот факт, что фазовый шум для побочного компонента остается таким же, как и для спектральной компоненты основного выходного сигнала. В результате уровень фазового шума синтезатора будет определяться его шумовыми характеристиками не на частоте, выделяемой полосовым фильтром, а в более низкочастотной области.

В табл. 1.4.1 приведены результаты сравнения достоинств и недостатков предложенного метода с рассмотренными ранее способами повышения выходной частоты ЦВС.

| Таблица 1.4.1 - Результаты сравнения мет |
|------------------------------------------|
|------------------------------------------|

| выходной частоты       | LIBC       |
|------------------------|------------|
| bbilled in incerter bi | $z \sim c$ |

| Название метода          | Достоинства              | Недостатки                  | Влияние на уровень фазо-   |
|--------------------------|--------------------------|-----------------------------|----------------------------|
|                          |                          |                             | вых шумов                  |
| Разработка интегральных  | Не сопровождается ус-    | Сложность реализации        | Фазовые шумы увеличива-    |
| ЦВС с более высокими     | ложнением структуры      |                             | ются пропорционально вы-   |
| значениями тактовой час- | устройства, имеется воз- |                             | ходной частоте синтезатора |
| тоты                     | можность применения      |                             |                            |
|                          | совместно с другими      |                             |                            |
|                          | методами повышения       |                             |                            |
|                          | выходной частоты ЦВС     |                             |                            |
| Применение дискретных    | Возможность сущест-      | Дискретность возможных      | Транзисторные умножители   |
| умножителей выходной     | венного увеличения час-  | коэффициентов умноже-       | обладают собственным       |
| частоты ЦВС на транзи-   | тот формируемых сигна-   | ния; кратность их числам    | уровнем фазовых шумов, а   |
| сторах                   | лов, малая инерцион-     | 2, 3, 5; сложность получе-  | фазовые шумы предыдущих    |
|                          | ность транзисторных      | ния некоторых коэффици-     | каскадов формирователя     |
|                          | каскадов умножения час-  | ентов умножения (напри-     | квадратично возрастают     |
|                          | тоты                     | мер, 7, 11, 13 и др.) ввиду | пропорционально коэффи-    |
|                          |                          | существенного снижения      | циенту умножения транзи-   |
|                          |                          | кпд                         | сторного умножителя час-   |
|                          |                          |                             | тоты                       |

| Использование умножите- | Возможность получения  | Увеличение длительности   | Петля ФАПЧ обладают соб-     |
|-------------------------|------------------------|---------------------------|------------------------------|
| лей выходной частоты    | больших значений коэф- | переходного процесса при  | ственным уровнем фазовых     |
| ЦВС на основе петли     | фициентов умножения,   | переключении ЦВС либо     | шумов,а фазовые шумы         |
| ФАПЧ                    | которые могут быть     | ФАПЧ на новую синтези-    | предыдущих каскадов фор-     |
|                         | дробными; фильтрация   | руемую частоту, возмож-   | мирователя квадратично       |
|                         | петлей ФАПЧ паразит-   | ность потери устойчивости | возрастают пропорциональ-    |
|                         | ных спектральных со-   |                           | но коэффициенту умноже-      |
|                         | ставляющих, присутст-  |                           | ния петли ФАПЧ               |
|                         | вующих в спектре вы-   |                           |                              |
|                         | ходного сигнала ЦВС    |                           |                              |
| Преобразование выходной | Относительная простота | Присутствует вероятность  | Уровень фазовых шумов        |
| частоты ЦВС вверх       | реализации             | нарушения когерентности   | формирователя увеличива-     |
|                         |                        | входных сигналов смеси-   | ется за счет введения в схе- |
|                         |                        | теля, поступающих от      | му дополнительных источ-     |
|                         |                        | двух различных генерато-  | ников фазовых шумов –        |
|                         |                        | ров (ГОЧ и генератора     | смесителя и генератора       |
|                         |                        | подставки)                | подставки                    |
| Использование образов   | Простота реализации    | Амплитуды образов         | Относительный фазовый        |
| основной частоты ЦВС    |                        | меньше амплитуды основ-   | шум для побочных компо-      |
|                         |                        | ной спектральной компо-   | нентов остается таким же,    |
|                         |                        | ненты, необходимость      | как и для спектральной       |
|                         |                        | частотного планирования   | компоненты основного вы-     |
|                         |                        |                           | ходного сигнала ЦВС          |
|                         |                        |                           |                              |

## Продолжение таблицы 1.4.1

Таким образом, из проведенного сравнительного анализа следует, что предложенный метод является весьма перспективным способом повышения выходной частоты ЦВС за счет простоты реализации.

## 1.5 Выводы и постановка задачи исследования

1. Проведен анализ методов построения, важнейших характеристик, достоинств и недостатков современных цифровых вычислительных синтезаторов, показаны их преимущества перед другими методами синтеза, а также перспективность использования в качестве формирователей сигналов. 2. Рассмотрены известные подходы к количественной оценке, математическому и экспериментальному анализу шумовых характеристик, являющихся качественными показателями стабильности частоты формирователей сигналов.

3. Показано, что одним из основных недостатков интегральных цифровых вычислительных синтезаторов, затрудняющих их применения в качестве формирователей стабильных частот и сигналов, является ограничение максимального значения синтезируемой частоты значением в 1500-1700 МГц.

4. Для повышения выходной частоты формирователей сигналов на основе ЦВС существуют следующие методы: разработка интегральных микросхем с более высокими значениями тактовой частоты, умножение выходной частоты ЦВС транзисторными каскадами либо петлей ФАПЧ, преобразование выходной частоты синтезатора вверх.

5. Известные способы увеличения выходной частоты ЦВС обладают характерными недостатками и не всегда эффективны. По существу, лишь метод умножения выходной частоты дискретными транзисторными умножителями является относительно простым и легко реализуемым. Однако с увеличением частоты, при этом методе, также увеличивается уровень фазовых шумов. Перспективным методом является использование образов - побочных компонентов спектра выходного сигнала цифро-аналогового преобразователя синтезатора, однако данный принцип мало изучен и освещен в научной литературе, а также отсутствуют сведения о реальных устройствах, его реализующих.

В связи с этим **целью** диссертационной работы является повышение качественных характеристик формирователей сигналов с использованием образов основной частоты цифровых вычислительных синтезаторов.

Выполнение цели требует решения следующих задач:

 обосновать возможность использования образов основной частоты цифровых вых вычислительных синтезаторов для повышения выходных частот формирователей когерентных сигналов без существенного увеличения фазовых шумов и разработать обобщенную структурную схему;

- разработать алгоритм и программное обеспечение для частотного плани-

рования формирователей когерентных сигналов, использующих образы основной частоты цифровых вычислительных синтезаторов;

- на основе экспериментальных данных разработать математическую модель спектральной плотности мощности фазовых шумов цифровых вычислительных синтезаторов для частот образов;

- теоретически и экспериментально исследовать шумовые свойства формирователей когерентных сигналов, использующих образы основной частоты цифровых вычислительных синтезаторов.
# ГЛАВА 2. ТЕОРИЯ ПОСТРОЕНИЯ ФОРМИРОВАТЕЛЕЙ СИГНАЛОВ С ПРИМЕНЕНИЕМ ОБРАЗОВ ОСНОВНОЙ ЧАСТОТЫ ЦИФРОВЫХ ВЫЧИСЛИТЕЛЬНЫХ СИНТЕЗАТОРОВ

### 2.1 Модели выходного сигнала цифрового вычислительного синтезатора, использующего образы основной частоты

Для оценивания качественных показателей формирователей сигналов на основе ЦВС, использующих образы основной частоты, необходимо проанализировать спектр сигнала на выходе таких устройств. Для этого необходимо разработать математическую модель сигнала на выходе ЦАП исследуемого синтезатора с учетом реальных особенностей его функционирования: эффекта дискретизации, ошибок из-за усечения кода фазы и квантования [111, 112].

Дискретизация выходного сигнала синтезатора связана с особенностью цифро-аналогового преобразования [103] и проявляется зеркальным отображением частотных компонентов спектра ЦАП ЦВС относительно частоты такти-

рования с огибающей, изменяющейся по закону  $K_{IIAII}(f) = sin\left(\pi \frac{f}{f_T}\right) / \left(\pi \frac{f}{f_T}\right)$ .

Выходной сигнал ЦАП ЦВС при учете только эффекта дискретизации определяется выражением

$$s_i = \sin\left(2\pi \left[\frac{K}{2^p}i\right]\right),\tag{2.1.1}$$

где, *i*- отсчеты времени,  $K = round\left(\frac{f_{\mu BC}2^{p}}{f_{T}}\right)$  - код синтезируемой часто-

ты, *round* (*x*) – округление числа *x* до ближайшего целого, *p* – разрядность аккумулятора фазы.

*Ошибки из-за усечения кода фазы* определяются отбрасыванием младших бит аккумулятора фазы при их передаче к ПЗУ. Возникновение данного эффекта связано со следующим противоречием: с одной стороны, для улучшения разрешения ЦВС по частоте необходимо иметь большую разрядность аккумулятора фазы (21-48 бит), а с другой – использование всех этих разрядов для адресации ПЗУтребует увеличения его объема в степенной зависимости, что, вопервых, весьма сложно реализовать технически, а во-вторых, существенно увеличивает стоимость синтезатора. Из-за этого для адресации ПЗУ используют лишь 12-16 старших разрядов аккумулятора фазы, а величина b=p-a называется числом бит округления.

С использованием [8] получена математическая модель выходного сигнала ЦАП ЦВС, учитывающая дискретизацию выходного сигнала и ошибки, вызванные округлением фазы при адресации ПЗУ

$$s1_{i} = sin\left(2\pi \frac{2^{b}}{2^{p}} trunc\left[\frac{K}{2^{b}}i\right]\right), \qquad (2.1.2)$$

где trunc(x) – целая часть числа x.

Ошибки квантования возникают вследствие конечной разрядности данных ЦВС и проявляются отклонением отсчетов выходного сигнала ЦАП от идеальных теоретических значений неограниченной разрядности.

Математическая модель выходного сигнала ЦАП ЦВС, учитывающая дискретизацию выходного сигнала и ошибки квантования, описывается следующим выражением

$$s2_{i} = trunc \left( N \cdot sin \left( 2\pi \frac{f_{\mu BC} \cdot i}{f_{T}} \right) \right) / N , \qquad (2.1.3)$$

Объединением моделей (2.1.2) и (2.1.3) получена математическая модель выходного сигнала ЦАП ЦВС, в которой учтены эффекты дискретизации, а также ошибки, связанные с усечением кода фазы и квантованием амплитуды

$$s3_{i} = \frac{trunc\left(N \cdot sin\left(2\pi \frac{2^{b}}{2^{p}} trunc\left[\frac{K}{2^{b}}i\right]\right)\right)}{N},$$
(2.1.4)

где  $N=2^n$  - число уровней квантования ЦАП.

Для моделирования использовались параметры ЦВС, соответствующие техническим характеристикам реального интегрального синтезатора AD9910 фирмы Analog Devices [78]:

- частота тактирования *f*<sub>T</sub> была выбрана равной 100 МГц, что является минимальных значением для ЦВС АD9910;

- количество разрядов аккумулятора фазы p = 32;

- количество разрядов ПЗУ a = 19;

- количество разрядов ЦАП *n* = 14.

Исследования математических моделей (2.1.2), (2.1.3), (2.1.4) показали, что видимых отличий между результатами моделирования практически нет. Поэтому приведем результаты моделирования для модели (2.1.4). На рис. 2.1.1 представлены сигналы на выходе ЦАП ЦВС при  $K_{ЦBC} = 0,15$  и  $K_{ЦBC} = 0,03$ , полученные на основании моделей (2.1.1) и (2.1.4). Непрерывными «ступеньками» на графиках изображены выходные сигналы ЦАП ЦВС при учете эффекта дискретизации, ошибок усечения кода фазы и квантования, пунктиром – только при учете эффекта дискретизации.

Для оценки точности математического моделирования необходимо дальнейшее исследование ошибок моделей сигналов во временной области, а также построение спектров выходного сигнала ЦАП и спектров сигналов ошибок исследуемых моделей (2.1.2)-(2.1.4).





Рисунок 2.1.1 – Выходные сигналы ЦАП ЦВС с учетом эффектов дискретизации, усечения кода фазы и квантования а) при *К*<sub>ЦВС</sub> = 0,15; б) при *К*<sub>ЦВС</sub> = 0,03

Для наглядной оценки адекватности предложенных моделей можно воспользоваться программой ADIsimDDS, которая позволяет получить временное и частотное представление выходного сигнала конкретного ЦВСпроизводства фирмы AnalogDevices. Результаты моделирования выходного сигнала ЦАП ЦВС AD9910 с помощью данной программы при выбранных ранее коэффициентах передачи синтезатора приведены на рис. 2.1.2.





Рисунок 2.1.2 – Выходные сигналы ЦАП ЦВС, полученные в программе ADIsimDDS a) при *К*<sub>ЦВС</sub>=0,15; б) при *К*<sub>ЦВС</sub>=0,03

Сравнение предложенных в данном параграфе моделей (2.1.2)-(2.1.4) с результатами расчета выходного сигнала ЦАП ЦВС в специализированной программе ADIsimDDS наглядно иллюстрирует близкое схождение форм сигналов на полученных графических зависимостях.

## 2.2 Анализ влияния ограничений параметров структурных звеньев цифровых вычислительных синтезаторов на параметры выходного сигнала

В п. 2.1 было показано, что различия между синтезированными сигналами ЦВС во временной области по моделям (2.1.2)-(2.1.4) малозаметны, и для оценки их точности необходимо провести исследование учтенных в данных моделях ошибок во временной и частотной областях. Для этого необходимо осуществить передискретизацию синтезируемых сигналов (2.1.2)-(2.1.4), которая заключается в увеличении тактовой частоты ЦВС в некоторое число раз и добавлении в сигнал нулевых отсчетов.

На рис. 2.2.1 представлены погрешности моделей синтезируемых сигналов ЦВС (2.1.2)-(2.1.4) относительно модели выходного сигнала синтезатора при учете только эффекта дискретизации (2.1.1), полученные с применением передискретизации в 16 раз при  $K_{LBC} = 0,15$  и  $K_{LBC} = 0,03$ .



Рисунок 2.2.1 – Сигналы ошибок моделей синтезируемых сигналов ЦВС а) при  $K_{LBC} = 0,15, 6$ ) при  $K_{LBC} = 0,03$ 

Из рис. 2.2.1 следует, что сигнал ошибки модели  $\Delta s1_i$ , учитывающей усечение кода фазы, представляет собой непериодическую ступенчатую функцию, амплитуда которой при  $K_{\mu BC} = 0,15$  достигает максимального значения, равного  $|\pm 0,000012|$  и незначительно изменяется при варьировании коэффициента передачи синтезатора. Сигнал ошибки модели  $\Delta s2_i$ , учитывающей квантование амплитуды при цифро-аналоговом преобразовании, представляет собой сложную непериодическую последовательность, состоящую из нескольких скачкообразно чередующихся импульсов ошибок различной полярности. И наконец, сигнал ошибки результирующей модели выходного сигнала ЦВС  $\Delta s3_i$ , учитывающей ошибки, связанные как с усечением кода фазы, так и с квантованием

амплитуды, характеризуется особенностями составляющих его ошибок  $\Delta s1_i$  и  $\Delta s2_i$ . При этом влияние коэффициента передачи ЦВС на амплитуды сигналов ошибок  $\Delta s2_i$  и  $\Delta s3_i$ , которые в среднем составляют  $|\pm 0,00006|$  и значительно превышают ошибки усечения кода фазы, является незначительным.

На рис. 2.2.2 в линейном масштабе приведены спектры сигналов ошибок для модели выходного сигнала ЦВС (2.1.2) и их огибающие при  $K_{LBC} = 0,15$  и  $K_{LBC} = 0,03$  в полосе частот от 0 Гц до  $4f_T$ ; на рис. 2.2.3 – для модели (2.1.3), а на рис. 2.2.4 – для модели (2.2.4).



Рисунок 2.2.2 - Спектры сигналов ошибок модели выходного сигнала ЦВС, учитывающей усечение кода фазы и их огибающие

а) при *К<sub>ЦВС</sub>* = 0,15; б) при *К<sub>ЦВС</sub>* = 0,03





а) при *К<sub>ЦВС</sub>* = 0,15; б) при *К<sub>ЦВС</sub>* = 0,03



44



Рисунок 2.2.4 - Спектры сигналов ошибок модели выходного сигнала ЦВС, учитывающей усечение кода фазы и квантование амплитуды и их огибающие

#### а) при *К<sub>ШВС</sub>* = 0,15; б) при *К<sub>ШВС</sub>* = 0,03

Из полученных графических зависимостей (рис. 2.2.2 - 2.2.4) следует, что варьирование коэффициента передачи синтезатора приводит к изменению числа составляющих в спектре сигналов ошибок исследуемых моделей и перераспределению их амплитуд. При этом установлено, что чем меньше число паразитных спектральных составляющих, тем выше их уровень, и наоборот [113].

Кроме того, наглядно видно, что огибающие спектров исследуемых сигналов ошибок моделей выходных сигналов ЦВС изменяются от частоты по закону, соответствующему функции синус Котельникова. Эта особенность позволяет сделать вывод о том, что при использовании образов основной частоты ЦВС, огибающая которых, как было показано в гл.1, также определяется данной функцией, относительный уровень паразитных спектральных составляющих и фазовых шумов, определяемых ошибками из-за усечения кода фазы и квантования, будет таким же, как и на основной частоте ЦВС. В результате, используя для формирования сигналов образы основной частоты ЦВС, можно получить меньший уровень фазовых шумов, чем при формировании сигналов с применением других методов (умножения выходной частоты с помощью транзисторных каскадов, петли ФАПЧ или сдвига частоты).

Однако линейный масштаб не позволяет оценить уровень паразитных спектральных составляющих в спектре выходного сигнала ЦВС, определяемых

45

ограничениями параметров его структурных звеньев и характеризующихся сигналами ошибок моделей (2.1.2) – (2.1.4). В связи с этим на рис. 2.2.5 в логарифмическом масштабе приведены спектры сигналов ошибок для модели (2.1.2) и огибающие спектра выходного сигнала ЦВС при  $K_{LBC}=0,15$  и  $K_{LBC}=0,03$  в полосе частот от 0 Гц до  $2f_T$ ; на рис. 2.2.6 – для модели (2.1.3), а на рис. 2.2.7 – для модели (2.2.4).



Рисунок 2.2.5- Спектры сигналов ошибок модели, учитывающей усечение кода фазы и огибающие спектра выходного сигнала ЦВС а) при *К*<sub>ЦВС</sub> = 0,15; б) при *К*<sub>ЦВС</sub> = 0,03



Рисунок 2.2.6- Спектры сигналов ошибок модели, учитывающей квантование амплитуды и огибающие спектра выходного сигнала ЦВС а) при *К*<sub>ШВС</sub> = 0,15; б) при *К*<sub>ШВС</sub> = 0,03

Из полученных графических зависимостей следует, что наименьшей амплитудой обладают паразитные спектральные составляющие, вызванные ошибками из-за усечения кода фазы. При  $K_{LBC} = 0,15$  их уровень в полосе синтезируемых частот (область от 0 Гц до  $f_T/2$ ) составляет минус 104 – минус 122 дБ и при  $K_{LBC} = 0,03$  снижается до уровня в минус 135 дБ.

В итоге оказывается, что ошибки наиболее полной результирующей модели выходного сигнала ЦВС (2.1.4) практически полностью определяются ошибками квантования ЦАП, амплитуды спектральных составляющих которых на 15-20 дБ превышают уровень паразитных спектральных составляющих, вызванных усечением кода фазы и при  $K_{LBC} = 0,15$  составляют уровень в минус 87 – минус 102 дБ, а при  $K_{LBC} = 0,15$  –уровень в минус 87 – минус 114 дБ.



Рисунок 2.2.7- Спектры сигналов ошибок модели, учитывающей усечение кода фазы, квантование амплитуды и огибающие спектра выходного сигнала ЦВС

а) при *К<sub>ЦВС</sub>*=0,15; б) при *К<sub>ЦВС</sub>*=0,03

На представленных зависимостях выходной спектр ЦВС изображен в виде огибающей. Это обусловлено ограничением вычислительных возможностей программных средств для отображения спектра выходного сигнала ЦВС при реальных параметрах синтезатора - разрядностях его аккумулятора фазы в 2448 бит и ПЗУ в 14-16 бит. Спектр выходного сигнала синтезатора AD9910 в программе ADIsimDDS (рис. 2.2.8) также содержит только спектральные составляющие наибольшей амплитуды – первые три гармоники основной частоты ЦВС и их образы.



Рисунок 2.2.8- Спектры выходного сигнала ЦВС, полученные в программе ADIsimDDS a) при  $K_{LBC} = 0,15$ ; б) при  $K_{LBC} = 0,03$ 

Сравнение спектров выходных сигналов ЦВС, полученных по модели (2.1.4) и в программе ADIsimDDS показывает, что уровни основной гармоники

и ее образов совпадают, и предложенную в п. 2.1 модель можно считать адекватной реальному выходному сигналу синтезатора. Кроме того, в отличие от известного программного продукта, разработанная модель выходного сигнала ЦВС учитывает реальные ограничения параметров структурных звеньев синтезатора (конечную разрядность ЦАП и отбрасывание младших разрядов аккумулятора фазы при передаче их к ПЗУ), которые проявляются образованием в основной полосе спектра выходного сигнала ЦВС паразитных спектральных составляющих и фазовых шумов, оказывающих непосредственное влияние на спектральную чистоту синтезируемого сигнала.

## 2.3 Обобщенная схема формирователя сигналов с использованием образов основной частоты цифровых вычислительных синтезаторов

В гл. 1 были рассмотрены известные на данный момент подходы к построению формирователей сигналов, их структурные реализации, показана эффективность использования для решения данной задачи образов основной частоты ЦВС. Данный параграф посвящен вопросу разработки обобщенной структурной схемы формирователя сигналов при использовании образов основной частоты ЦВС.

При формировании сигналов в качестве источников стабильных опорных частот активно используются недорогие широко распространенные кварцевые генераторы. Формируемые такими генераторами частоты, как правило, не превышают десятков мегагерц и требуют дальнейшего умножения.

Реализация умножения частоты источника высокостабильного сигнала формирователя возможна либо на нелинейных элементах с помощью одного или нескольких транзисторных каскадов, либо с помощью системы ФАПЧ, интегрированной в микросхему ЦВС. В последнем случае легко получить практически любой целочисленный коэффициент умножения, определяемый для современных микросхем ЦВС максимальным значением в 255 и, в отличие от транзисторных каскадов, изменяемый с шагом, равным единице [114]. Исполь-

50

зование транзисторных умножителей накладывает определенные ограничения на выбор коэффициента умножения, так как он будет определяться последовательно соединенными умножителями с коэффициентами умножения 2, 3 или 5.

После предварительных умножителей частоты необходимо расположить устройство, задающее формируемую частоту с малым шагом сетки, в качестве которого предлагается использовать ЦВС в режиме образов основной частоты[115, 116]. При таком построении формирователя его разрешение по частоте будет определяться, по сути, шагом сетки частот ЦВС, а использование образов основной частоты синтезатора позволит перенести синтезируемую частоту в более высокочастотный диапазон с сохранением уровня паразитных спектральных составляющих и фазовых шумов основного колебания. В этом случае тактовая частота синтезатора определяется значением выходной частоты умножителей частоты кварцевого генератора.

Для выделения необходимого образа основной частоты ЦВС, как было показано в п. 1.3, на выходе синтезатора требуется использовать полосовой фильтр, настроенный на соответствующую частоту.

Применение образов основной частоты ЦВС позволяет либо полностью отказаться от использования последующих умножителей частоты сигнала на выходе полосового фильтра, либо существенно уменьшить требования к их коэффициенту умножения и его шагу. В результате в качестве второго умножителя частоты формирователя сигналов предлагается использовать один или несколько транзисторных каскадов во избежание увеличения времени перестройки, характерной при использовании петли ФАПЧ.

Таким образом, результирующая обобщенная структурная схема формирователя сигналов с использованием образов основной частоты ЦВС имеет вид, представленный на рис. 2.3.1.

51



Рисунок 2.3.1- Обобщенная структурная схема формирователя сигналов с использованием образов основной частоты ЦВС

На схеме приняты следующие обозначения: ГОЧ – генератор опорной частоты  $f_{\Gamma O \Psi}$ , УЧ1 – умножитель частоты кварцевого генератора на нелинейных элементах или на основе петли ФАПЧ с коэффициентом умножения  $n_1$ ;  $f_T$  – тактовая частота; ЦВС – цифровой вычислительный синтезатор; ПФ – полосовой фильтр;  $f_{o\delta p}$  – частота образа, УЧ2 - умножитель частоты выходного сигнала полосового фильтра на нелинейных элементах с коэффициентом умножения  $n_2$ ;  $f_{\phi}$  – выходная частота формирователя сигналов.

Запишем основные математические соотношения, необходимые для определения выходной частоты формирователя.

Тактовая частота ЦВС связана с частотой ГОЧ пропорциональной зависимостью, определяемой коэффициентом умножения УЧ1

$$f_T = n_1 f_{\Gamma O \Psi} \,. \tag{2.3.1}$$

Основная синтезируемая частота ЦВС определяется частотой тактирования и его коэффициентом передачи  $K_{LBC}$ , который в режиме образов ограничивается значениями от 0,15 до 0,35

$$f_{\mathcal{L}BC} = K_{\mathcal{L}BC} f_T. \tag{2.3.2}$$

При отсутствии фильтрации выходной спектр ЦАП ЦВС содержит гармоники основной частоты синтезатора и их образы относительно тактовой частоты

$$f_{\mathcal{U}A\Pi} = \left| nf_T + kf_{\mathcal{U}BC} \right|. \tag{2.3.3}$$

где *n*=...-3, -2, -1, 0, 1,2,3... – номер образа.

В гл. 1 было показано, что из энергетических соображений для использования пригодны только побочные компоненты выходного спектра ЦАП ЦВС, соответствующие образам основной частоты и выделяемые полосовым фильтром

$$f_{o\delta p} = \left| nf_T + f_{\mathcal{U}BC} \right|. \tag{2.3.4}$$

После прохождения УЧ2 выходная частота формирователя преобразуется до значения

$$f_{\phi} = n_2 f_{o\delta p}. \tag{2.3.5}$$

В результате после преобразований выражений (2.3.1) – (2.3.5) получаем, что при использовании основной частоты ЦВС выходная частота формирователя определяется как

$$f_{\phi} = f_{\Gamma O \Psi} n_1 n_2 K_{\mu B C}, \qquad (2.3.6)$$

а при использовании ее образов как

$$f_{\Phi} = f_{\Gamma O \Psi} n_1 n_2 \left| n + K_{\mu B C} \right|, \qquad (2.3.7)$$

Полученная формула показывает, что выходная частота формирователя сигналов определяется коэффициентами умножения умножителей частоты, величиной частоты опорного генератора, номером выбранного образа и коэффициентом передачи ЦВС[117]. Соответственно, используя более высокие номера образов n, возможно либо уменьшить коэффициенты умножения  $n_1$  или  $n_2$ , либо значительно увеличить выходную частоту формирователя.

### 2.4 Передискретизация выходного сигнала цифрового вычислительного синтезатора

Результаты исследований в п. 2.1 и 2.2 показали, что амплитуды образов основной частоты выходного сигнала ЦАП ЦВС определяются огибающей спектра вида синус Котельникова и несколько меньше уровня спектральной компоненты основной частоты  $f_{IIBC}$ . Данное снижение амплитуд образов при-

водит к уменьшению отношения сигнал/шум устройства, поэтому для использования образов основной частоты ЦВС требуется повысить их амплитуду.

В рассматриваемой обобщенной структурной схеме формирователя сигналов с использованием образов основной частоты ЦВС (рис. 2.3.1) возможно использование на выходе полосового фильтра усилителя, позволяющего увеличить амплитуду выделяемого образа, что, однако влечет за собой ухудшение шумовых характеристик всего формирователя.

Одним из возможных решений указанной проблемы может служить перераспределение энергии частотных составляющих в спектре выходного сигнала ЦАП ЦВС с помощью передискретизации [118, 119]. Она позволяет перераспределить энергию от основной частоты ЦВС на ее образы так, что амплитуды некоторых высокочастотных составляющих будут больше, чем до передискретизации. Это позволит снизить требуемый коэффициент усиления усилителя, и, в некоторых случаях, отказаться от его использования.

Структурная схема ЦВС с передискретизацией выходного сигнала приведена на рисунке 2.4.1. На схеме приняты следующие обозначения: ПС - преобразователь скважности, осуществляющий изменение скважности тактовых импульсов до требуемого значения; АК – аналоговый коммутатор.



Рисунок 2.4.1 - Структурная схема ЦВС с передискретизацией выходного сигнала

В данной структурной схеме частота тактового сигнала ЦВС равна частоте ГОЧ, поэтому преобразователь скважности ПС подключается напрямую. В случаях, когда применяется интегральный ЦВС, в составе которого имеется встроенный умножитель тактовой частоты на основе системы ФАПЧ, тактовый

54

сигнал для преобразователя скважности требуется брать с его выхода непосредственно перед ЦВС. В простейшем случае преобразователь скважности ПС представляет собой логический элемент «И». На один из его входов подается исходный тактовый сигнал, а на другой – тактовый сигнал, прошедший через интегрирующую RC-цепь (для повышения скважности выходного сигнала ПС выше 2) или через дифференцирующую RC-цепь (для понижения скважности ниже 2). В результате на выходе логического элемента создается сигнал в виде последовательности прямоугольных импульсов с требуемой скважностью. Данный сигнал управляет работой аналогового коммутатора, который в определенные интервалы времени пропускает выходной сигнал ЦВС, а в остальное время находится в разомкнутом состоянии.

Для оценки эффективности предлагаемого решения проведено схемотехническое моделирование исследуемого устройства, показанного на рис. 2.4.1. Данная модель, реализованная в программе Micro-CAP, представлена на рис. 2.4.2.



Рисунок 2.4.2 – Схемотехническая модель ЦВС с передискретизацией выходного сигнала

55

Результаты моделирования работы исследуемого устройства во временной области представлены на рис.2.4.2-2.4.3.



Рисунок 2.4.2 - Осциллограммы сигналов устройства с передискретизацией выходного сигнала ЦВС при *q* = 5 и *K*<sub>ЦВС</sub> = 0,15: тактового сигнала, сигнала с преобразованной скважностью, выходного сигнала ЦАП, выходного сигнала АЦП, передискретизированного синусоидального сигнала

В данной модели в качестве ЦВС используется последовательное соединение источника идеального синусоидального сигнала, аналого-цифрового и цифро-аналогового преобразователей, тактовым сигналом для которых служил выходной сигнал ГОЧ. В качестве ГОЧ принят идеальный источник прямоугольных импульсов с периодом повторения 1 мкс и скважностью 2. Синтезируемая частота ЦВС в такой модели ЦВС задается частотой источника идеального синусоидального сигнала. В качестве АК использован идеальный аналоговый ключ, управляемым напряжением импульсной последовательности со скважностью 5 или 1,25. Основная частота выходного сигнала ЦВС  $f_{ЦBC}$  составляет 150 кГц, либо 250 кГц. Тактовая частота соответствует значению в 1 МГц.



Рисунок 2.4.3 - Осциллограммы сигналов устройства с передискретизацией выходного сигнала ЦВС при *q* = 1,25 и *К*<sub>ЦВС</sub> = 0,15: тактового сигнала, сигнала с преобразованной скважностью, выходного сигнала ЦАП, выходного сигнала

АЦП, передискретизированного синусоидального сигнала

На рис.2.4.4-2.4.7 представлены результаты моделирования выходного сигнала ЦВС в частотной области до (1) и после передискретизации (2) для различных скважностей и частот выходного сигнала ЦВС.



Рисунок 2.4.4 - Спектр выходного сигнала ЦВС до (1) и после передискретизации (2) при q = 5 и  $K_{LBC} = 0,15$ 



Рисунок 2.4.5 - Спектр выходного сигнала ЦВС до (1) и после передискретизации (2) при q = 1,25 и  $K_{\mbox{\tiny LBC}} = 0,15$ 



Рисунок 2.4.6 - Спектр выходного сигнала ЦВС до (1) и после передискретизации (2) при q = 5 и  $K_{LBC} = 0,25$ 

Полученные спектры содержат гармоники основной частоты ЦВС  $(f_{UBC} = 150 \text{ к}\Gamma \text{ц} \text{ на рис } 2.4.4, 2.4.5 \text{ и} f_{UBC} = 250 \text{ к}\Gamma \text{ц} \text{ на рис. } 2.4.6, 2.4.7),$  их образы с частотами  $f_{o\delta p} = |nf_T + f_{UBC}|$ , тактовую частоту  $f_T$  и ее гармоники, а также дискретные и шумовые побочные спектральные составляющие.



Рисунок 2.4.7 - Спектр выходного сигнала ЦВС до (1) и после передискретизации (2) при q = 1,25 и  $K_{LBC} = 0,25$ 

Из представленных спектров видно, что изменение скважности тактового сигнала и передискретизация выходного сигнала ЦВС приводят к изменению амплитуд гармоник основной частоты и их образов. В результате, если исходная огибающая спектра выходного сигнала ЦВС представляет собой вид функции синус Котельникова, принимающей нулевые значения на частотах, кратных тактовой частоте ЦВС, то при передискретизации наблюдается смещение нулевых точек огибающей спектра так, что происходит перераспределение энергии гармоник. При этом увеличение или ослабление амплитуд требуемых спектральных составляющих осуществляется подбором скважности импульсов передискретизации. Можно отметить, что коэффициент передачи ЦВС также влияет на изменение амплитуд гармоник в процессе передискретизации. При низком  $K_{LIBC}$  увеличение уровней амплитуды гармоник больше, чем при большом значении  $K_{LIBC}$ .

Сравним изменение уровней различных спектральных составляющих до и после их передискретизации. Представление результатов моделирования в графическом виде позволит подробно оценить изменения амплитуд данных составляющих и, соответственно, огибающей спектра выходного сигнала ЦВС. На рис.2.4.8 представлена зависимость амплитуд гармоник основной частоты ЦВС от номеров образов до и после передискретизации при разных значениях основной частоты выходного сигнала ЦВС,  $f_{\text{ЦВС}} = 150 \text{ к}\Gamma\text{ц}$ , и  $f_{\text{ЦВС}} = 250 \text{ к}\Gamma\text{ц}$ . Тактовая частота устройства соответствует 1 МГц.



Рисунок 2.4.8 – Зависимость амплитуд гармоник основной частоты ЦВС от номеров образов до (1) и после передискретизации (q = 5, q = 1,25) при: a) 150

#### кГц, б) 250 кГц.

Из представленных зависимостей видно, что передискретизация выходного сигнала ЦВС уменьшает энергию гармоники основной частоты, перераспределяя ее на более высокочастотные компоненты спектра. Так, на частоте 150 кГц, передискретизация импульсами со скважностью 5 повышает амплитуду гармоник образов  $n = \pm (2..4)$  от 2 до 8 дБ. При этом наблюдается уменьшение амплитуды основной гармоники на 15 дБ. Использование импульсов с малой скважностью 1 < q < 2 приводит к тому, что амплитуды отрицательных образов увеличиваются, а положительных – уменьшаются. Например, по рис. 2.4.86 видно, что амплитуда первого положительного образа вследствие передискретизации уменьшилась с -21 до -49 дБ, при скважности q = 1,25.

Для того, чтобы амплитуда требуемого образа после передискретизации имела максимальное значение, требуется, чтобы данная гармоника попадала в максимум огибающей. Поэтому для практического использования явления передискретизации с целью увеличения амплитуды гармоник образов требуется оперативно вычислять оптимальное для данных условий значение скважности импульсов передискретизации по исходным значениям тактовой и основной частоты, и номеру выбранного образа.

Первый минимум огибающей спектра передискретизированного сигнала можно найти, если на оси частот спектра образов, нормированной к n, отложить значение скважности. Например, при q = 5, первый минимум огибающей спектра передискретизированного сигнала будет находиться в окрестности |n|=5, амплитуды пятого отрицательного и положительного образов, также как и амплитуда гармоники основной частоты станут ниже на 10-15 дБ. Соответственно, в таком случае больше всего увеличатся амплитуды второго и третьего, отрицательных и положительных образов. Теоретически, максимальное увеличение амплитуд образов с помощью эффекта передискретизации идеальными импульсами составляет 10-12 дБ, что подтверждает возможность использования данного явления для увеличения амплитуд высокочастотных гармоник, и соответственно, отношения сигнал/шум устройства при использовании образов основной частоты ЦВС.

## 2.5 Алгоритм частотного планирования формирователей сигналов с использованием образов основной частоты цифровых вычислительных синтезаторов

При проектировании устройств формирования сигналов одним из важнейших вопросов, требующих детальной проработки, является их частотное планирование, которое тесно связанно с реализацией их функциональных звеньев и проблемой электромагнитной совместимости.

Частотное планирование заключается в определении комбинаций допустимых значений следующих параметров формирователя сигналов, построенного на основе обобщенной схемы: коэффициентов умножения его умножителей частоты УЧ1 и УЧ2 ( $n_1$  и  $n_2$ ), а также номера и знака образа основной частоты

61

ЦВС *п*. При этом исходными данными к планированию являются такие параметры формирователя, как частота ГОЧ  $f_{\Gamma O \Psi}$ , максимальная тактовая частота ЦВС и диапазон выходных частот формирователя.

При проведении частотного планирования формирователя сигналов с использованием ЦВС в режиме образов основной частоты для обеспечения их достаточного энергетического уровня требуется исключить из расчета те варианты частотного плана, для которых не выполняется следующее условие

$$0,15 \le K_{UBC} \le 0,35. \tag{2.5.1}$$

Кроме того, из энергетических соображений также наиболее часто используются только образы основной частоты ЦВС с номерами n = -3, -2, -1, 0, 1, 2, 3, поскольку уровень побочных компонентов выходного спектра ЦАП более высокого порядка оказывается недостаточным для дальнейшего преобразования и требует применения последующего усиления.

С учетом данных условий, а также ограничения, заключающегося в том, что коэффициент умножения  $n_2$  должен быть кратным значениям 2, 3, и 5, частотное планирование формирователей сигналов на основе ЦВС с использованием образов основной частоты является весьма сложной задачей.

На рис. 2.5.1, 2.5.2 представлен алгоритм, предлагаемый для использования при частотном планировании формирователей сигналов на основе ЦВС с использованием образов его основной частоты [120-122].

Основными соотношениями для построения частотного плана являются выражения (2.3.1) – (2.3.7).

Алгоритм включает в себя следующие этапы:

1. Задаются исходные данные, необходимые для частотного планирования: частота ГОЧ  $f_{\Gamma O Y}$ , максимальная тактовая частота ЦВС и диапазон выходных частот формирователя.

2. На основании исходных данных определяется среднее значение коэффициента передачи ЦВС *К*<sub>ШВС</sub>. 3. Устанавливается максимальное количество образов *n<sub>max</sub>*, для которых ведется расчет частотного плана.

4. Задается диапазон номеров образов

$$n = -n_{max} \dots n_{max} \,. \tag{2.5.2}$$

5. Определяется диапазон значений коэффициента умножения тактового умножителя частоты ЦВС (УЧ1) в зависимости от типа ЦВС

$$n_1 = 1...n_{1\max}$$
, (2.5.3)

исходя из того, что

$$n_{1\max} = trunc(f_{T\max} / f_{\Gamma O \Psi}), \qquad (2.5.4)$$

и определяется частота тактирования ЦВС

$$f_T = n_1 \cdot f_{\Gamma O \Psi} \quad , \tag{2.5.5}$$

6. Осуществляется предварительный расчет коэффициента умножения выходного умножителя частоты формирователя сигналов (УЧ2):

$$n_2 = round\left(\frac{f_{\phi}}{f_T \cdot K_{\mu BC}}\right), (при n = 0);$$
 (2.5.6)

$$n_2 = round\left(\frac{f_{\phi}}{f_T \cdot \left|n + K_{LBC}\right|}\right), (при \ n \neq 0);$$
(2.5.7)

7. Определяется частота *n*-го образа основной частоты ЦВС

$$f_{o\delta p} = f_{\Phi} / n_2.$$
 (2.5.8)

8. Производится расчет, уточняющий коэффициент передачи ЦВС КЦВС:

$$K_{\text{ЦBC}} = \left(\frac{f_{\phi}}{f_T \cdot n_2}\right), (при \ n = 0);$$
(2.5.9)

$$K_{\text{ЦBC}} = \left(\frac{\text{sign}(n)f_{\phi}}{f_T \cdot n_2} - n\right), (при \ n \neq 0);$$
(2.5.10)

при условии, что

$$\left[\operatorname{sign}(n)f_{\Phi}/f_{T}\cdot n_{2}-n\right] \leq K_{\mu BC} \wedge \left[\operatorname{sign}(n)f_{\Phi}/f_{T}\cdot n_{2}-n\right] \geq K_{\mu BC} \wedge \left[\operatorname{sign}(n)f_{\Phi}/f_{T}\cdot n_{2}-n\right] = K_{\mu BC} \wedge \left[\operatorname{sign}(n)f_{\Phi}/f_{T}\cdot n_{$$

Данный этап позволяет выделить варианты частотного плана, которые можно реализовать в соответствии с условием (2.5.1). Для остальных вариан-

тов, не удовлетворяющих данному условию фильтрации, значения  $K_{\mu BC}$  приравниваются к нулю.



Рисунок 2.5.1 – Блок схема алгоритма частотного планирования формирователей сигналов на основе ЦВС с использованием образов его основной частоты

9. В дальнейших расчетах используются значения  $n_2$ , для которых  $K_{\mu BC} \neq 0$ . В случае, если  $K_{\mu BC} = 0$ , то коэффициент умножения выходного ум-

ножителя формирователя сигналов УЧ2 становится равным нулю ( $n_2 = 0$ ). Это означает, что данный вариант частотного плана реализовать невозможно.



Рисунок 2.5.2 – продолжение блок схемы алгоритма частотного планирования формирователей сигналов на основе ЦВС с использованием образов его основ-

ной частоты

|           |           |    | C              | ſ          | V             | C      |           |           | λŢ | C              | C          | V     | C                        |
|-----------|-----------|----|----------------|------------|---------------|--------|-----------|-----------|----|----------------|------------|-------|--------------------------|
| $n_{2_4}$ | $n_{1_4}$ | n  | <i>Јцвс</i> 4, | $J_{T4}$ , | <b>К</b> ЦВС4 | Јобр4, | $n_{2_4}$ | $n_{1_4}$ | IN | <i>Јцвс</i> 4, | $J_{T4}$ , | КЦВС4 | <i>Ј<sub>обр</sub>4,</i> |
|           |           |    | МΙЦ            | MIЦ        |               | МΙЦ    |           |           |    | МΙЦ            | МΙЦ        |       | МΙЦ                      |
| 8         | 14        | -1 | 71,62          | 336        | 0,213         | 264,4  | 2         | 26        | -2 | 190,5          | 624        | 0,305 | 1058                     |
| 25        | 14        | 0  | 84,6           | 336        | 0,252         | 82,94  | 5         | 26        | -1 | 201            | 624        | 0,322 | 423                      |
| 5         | 14        | 1  | 87             | 336        | 0,259         | 423    | 14        | 26        | 0  | 151,1          | 624        | 0,242 | 1511                     |
| 8         | 15        | -1 | 95,63          | 360        | 0,266         | 264,4  | 4         | 27        | -1 | 119,2          | 648        | 0,184 | 528,7                    |
| 24        | 15        | 0  | 88,13          | 360        | 0,245         | 88,13  | 13        | 27        | 0  | 162,7          | 648        | 0,251 | 162,7                    |
| 5         | 15        | 1  | 63             | 360        | 0,175         | 423    | 1         | 27        | 3  | 171            | 648        | 0,264 | 2115                     |
| 2         | 16        | -3 | 94,5           | 384        | 0,246         | 1058   | 4         | 28        | -1 | 143,3          | 672        | 0,213 | 528,7                    |
| 3         | 16        | -2 | 63             | 384        | 0,164         | 705    | 13        | 28        | 0  | 162,7          | 672        | 0,242 | 162,7                    |
| 7         | 16        | -1 | 81,86          | 384        | 0,213         | 302,1  | 4         | 29        | -1 | 167,3          | 696        | 0,24  | 528,7                    |
| 22        | 16        | 0  | 96,14          | 384        | 0,25          | 96,14  | 12        | 29        | 0  | 176,3          | 696        | 0,253 | 176,3                    |
| 3         | 17        | -2 | 111            | 408        | 0,272         | 705    | 4         | 30        | -1 | 191,3          | 720        | 0,266 | 528,7                    |
| 7         | 17        | -1 | 105,9          | 408        | 0,259         | 302,1  | 12        | 30        | 0  | 176,3          | 720        | 0,245 | 176,3                    |
| 21        | 17        | 0  | 100,7          | 408        | 0,247         | 100,7  | 1         | 31        | -3 | 117            | 744        | 0,157 | 2115                     |
| 4         | 17        | 1  | 120.8          | 408        | 0.296         | 528    | 4         | 31        | -1 | 215.2          | 744        | 0.289 | 528.7                    |
| 1         | 17        | 5  | 75             | 408        | 0,184         | 2115   | 11        | 31        | 0  | 192,3          | 744        | 0,258 | 192,3                    |
| 7         | 18        | -1 | 129.9          | 432        | 0.301         | 302.1  | 1         | 32        | -3 | 189            | 768        | 0.246 | 2115                     |
| 20        | 18        | 0  | 105.8          | 432        | 0.245         | 108.5  | 4         | 32        | -1 | 239.3          | 768        | 0.312 | 528.7                    |
| 4         | 18        | 1  | 96.75          | 432        | 0.224         | 528.7  | 11        | 32        | 0  | 192.3          | 768        | 0.25  | 192.3                    |
| 6         | 19        | -1 | 103 5          | 456        | 0.227         | 352.5  | 1         | 33        | -3 | 261            | 792        | 0.33  | 2115                     |
| 19        | 19        | 0  | 1113           | 456        | 0.244         | 111.3  | 4         | 33        | -1 | 263.2          | 792        | 0.332 | 528.7                    |
| 4         | 19        | 1  | 72 75          | 456        | 0.16          | 528.7  | 11        | 33        | 0  | 192.3          | 792        | 0.243 | 192.3                    |
| 2         | 19        | 2  | 145.5          | 456        | 0.319         | 105.8  | 2         | 33        | 1  | 265 5          | 792        | 0.335 | 105.8                    |
| 6         | 20        | -1 | 127.5          | 480        | 0.266         | 352.5  | 10        | 34        | 0  | 211.5          | 816        | 0,259 | 2115                     |
| 18        | 20        | 0  | 117.5          | 480        | 0.245         | 117.5  | 2         | 34        | 1  | 241.5          | 816        | 0.296 | 1058                     |
| 2         | 20        | 1  | 97.5           | 480        | 0.203         | 1058   | 3         | 35        | -1 | 135            | 840        | 0.161 | 705                      |
| - 6       | 21        | _1 | 151.5          | 504        | 0.301         | 352.5  | 10        | 35        | 0  | 211.5          | 840        | 0.252 | 2115                     |
| 11        | 21        | 0  | 124.4          | 504        | 0,301         | 124.4  | 2         | 35        | 1  | 211,5          | 840        | 0,252 | 1058                     |
| 1         | 21        | 4  | 00             | 504        | 0,247         | 2115   | 2         | 36        | 1  | 150            | 864        | 0.184 | 705                      |
| 1         | 21        | 4  | 99<br>105      | 529        | 0,190         | 422    | 2         | 26        | -1 | 211.5          | 004<br>064 | 0,104 | 2115                     |
| 5<br>16   | 22        | -1 | 103            | 528        | 0,199         | 425    | 2         | 26        | 0  | 102.5          | 864        | 0,243 | 1059                     |
| 2         | 22        | 1  | 132,2          | 520        | 0,23          | 705    | 2         | 27        | 1  | 193,3          | 004        | 0,224 | 705                      |
| 3         | 22        | 1  | 02             | 552        | 0,333         | 705    | 5<br>10   | 27        | -1 | 105            | 000        | 0,200 | 705                      |
| 5         | 23        | -4 | 120            | 552        | 0,100         | 422    | 10        | 27        | 0  | 160.5          | 000        | 0,238 | 1059                     |
| 15        | 23        | -1 | 129            | 552        | 0,234         | 423    | 2         | 20        | 1  | 109,5          | 000        | 0,191 | 1038                     |
| 15        | 23        | 0  | 141            | 552        | 0,255         | 141    | 3         | 38<br>29  | -1 | 207            | 912        | 0,227 | 705                      |
| 3         | 23        | 1  | 155            | 552        | 0,277         | 705    | 9         | 38        | 0  | 233            | 912        | 0,258 | 233                      |
| 1         | 24        | -4 | 189            | 576        | 0,328         | 2115   | 2         | 38        | 1  | 145,5          | 912        | 0,16  | 1058                     |
| 2         | 24        | -2 | 945            | 5/6        | 0,164         | 1058   |           | 38        | 2  | 291            | 912        | 0,319 | 2115                     |
| 5         | 24        | -1 | 153            | 576        | 0,266         | 423    | 3         | 39        | -1 | 231            | 936        | 0,247 | 705                      |
| 15        | 24        | 0  | 141            | 576        | 0,245         | 141    | 9         | 39        | 0  | 235            | 936        | 0,251 | 235                      |
| 3         | 24        | 2  | 129            | 5/6        | 0,224         | /05    |           | 39        | 2  | 243            | 936        | 0,26  | 2115                     |
| 3         | 25        | -1 | 130            | 600        | 0,217         | 470    | 3         | 40        | -1 | 255            | 960        | 0,266 | 705                      |
| 9         | 25        | 0  | 143,1          | 600        | 0,239         | 143,1  | 9         | 40        | 0  | 235            | 960        | 0,245 | 235                      |
| 2         | 25        | 1  | 105            | 600        | 0,175         | 705    |           | 40        | 2  | 195            | 960        | 0,203 | 2115                     |
|           |           |    |                |            |               |        | 3         | 41        | -1 | 279            | 984        | 0,284 | 705                      |
|           |           |    |                |            |               |        | 9         | 41        | 0  | 235            | 984        | 0,239 | 235                      |

Таблица 2.5.1 - Результаты частотного планирования формирователя сигналов

$$(f_{\phi} = 2115 \text{ M}\Gamma_{\text{II}})$$

10. Рассчитываются значения основной частоты ЦВС

$$f_{\mu BC} = f_{\phi} / n_2$$
,(при  $n = 0$ ); (2.5.12)

$$f_{\mu BC} = (sign(n) f_{\phi} / n_2 - n \cdot f_T), (при \ n \neq 0 \text{ и} n_2 \neq 0).$$
(2.5.13)

11. Производится уточняющий расчет выходной частоты ЦВС на *n*-м образе для  $n_2 \neq 0$ 

$$f_{o\delta p} = f_{\Phi} / n_2$$
 (2.5.14)

Пример расчета частотного плана для ЦВС AD9910 в составе формирователя сигналов с выходной частотой  $f_{\phi} = 2115$  МГц показан в таблице 2.5.1.

Полученные в результате варианты частотного плана определяют значения частот входных и выходных сигналов составляющих блоков обобщенной структурной схемы формирователя, а также коэффициенты умножения частоты. Поскольку вариантов планирования очень много, требуется автоматизация вычислений и выбора оптимальных комбинаций параметров.

## 2.6 Автоматизация частотного планирования формирователей сигналов с использованием образов основной частоты цифровых вычислительных синтезаторов

Применение методов математического моделирования для расчета частотного плана устройств формирования сигналов с использованием ЦВС в режиме образов основной частоты, построенных на основе обобщенной схемы (рис. 2.3.1), позволяет автоматизировать этап структурного проектирования формирователей и оптимизировать их параметры.

Разработанный в п. 2.5 алгоритм частотного планирования формирователей сигналов с использованием ЦВС в режиме образов основной частоты программно реализован в среде MathLAB в составе специализированного программного комплекса [123, 124].

Программа содержит модули расчета реализуемых на практике действительных и целочисленных комбинаций коэффициентов умножения умножителей частоты УЧ1 и УЧ2 ( $n_1,n_2$ ), графический интерфейс, обеспечивающий диалог с пользователем, компонент организации вывода данных в файл или на печать, а также диалоговую программу для организации связей между модулями. Исходными данными для расчета являются: частота ГОЧ, требуемая выходная частота формирователя сигналов или диапазон синтезируемых частот, предельные значения коэффициента передачи ЦВС, а также частотные параметры используемого типа ЦВС.

Внешний вид окна программы частотного планирования формирователей сигналов с использованием образов основной частоты ЦВС и результаты ее работы приведены на рис. 2.6.1.



Рисунок 2.6.1 - Внешний вид окна программы частотного планирования формирователей сигналов с использованием ЦВС в режиме образов основной частоты и результаты ее работы

Кроме графической интерпретации возможных вариантов частотного плана в целом, программа позволяет выполнить детальный расчет значений частот на выходах всех структурных звеньев формирователя для выбранной комбинации коэффициентов умножений *n*1 и *n*2.

Программный комплекс использовался при частотном планировании формирователей сигналов с использованием образов основной частоты ЦВС, построенных в соответствии с обобщенной схемой (рис. 2.3.1). В качестве примера рассмотрим формирователь сигналов в диапазоне частот от 3000 до 3100 МГц, имеющий интегральный ЦВС с умножителем тактовой частоты на ФАПЧ до 1000 МГц и транзисторным умножителем до частоты 350 МГц. На рис. 2.6.2 и 2.6.3 приведены результаты работы программы частотного планирования для двух значений частоты ГОЧ (24 и 72МГц) при  $K_{ЦBC} = 0,2...0,3$  и порядке образов основной частоты  $|n| \le 3$ .

Приведенные зависимости позволяют выбрать допустимые вещественные и целочисленные комбинации коэффициентов умножения УЧ1 и УЧ2 [ $n_2$ ; $n_1$ ] для реализации формирователя с заданными значениями частоты ГОЧ и диапазона выходных частот для основной частоты (n = 0) и ее образов.





Рисунок 2.6.2 - Диапазоны допустимых (слева) и целочисленных (справа) комбинаций коэффициентов [ $n_2$ ; $n_1$ ] для основной частоты ЦВС и ее образов при частотном планировании формирователя на основе ЦВС с  $f_{Tmax1}$  = 1000 МГц при  $f_0$  = 24 МГц (а) и 72 МГц (б)



a)



Рисунок 2.6.3 - Диапазоны допустимых (слева) и целочисленных (справа) комбинаций коэффициентов  $[n_2;n_1]$  для основной частоты ЦВС и ее образов при частотном планировании формирователя на основе ЦВС с  $f_{Tmax1}$  = 350 МГц при

 $f_0 = 24$  МГц (а) и72 МГц (б)

Из полученных графических зависимостей следует, что с ростом максимальной тактовой частоты ЦВС увеличивается число практически реализуемых вариантов частотного плана формирователя. Это вызвано возрастанием частоты Найквиста и, как следствие, расширением диапазонов допустимых значений основной частоты ЦВС и ее образов, зависящих от  $K_{UBC}$ .

Также количество реализуемых вариантов можно увеличить за счет снижения частоты опорного генератора при одновременном увеличении значений коэффициента  $n_1$ . Такой результат объясняется тем, что при уменьшении частоты ГОЧ в k раз и неизменной  $f_T$  во столько же раз возрастает величина максимально возможного коэффициента  $n_{100n} = f_T/f_0$  и диапазона допустимых значений.

Зависимости, приведенные на рис. 2.6.1 и 2.6.2, свидетельствуют также о том, что применение умножителя тактовой частоты и использование образов основной частоты ЦВС позволяет существенно уменьшить значения коэффициента  $n_2$  и упростить реализацию УЧ2. Так, при формировании сигнала на основной частоте в соответствии с рис. 2.6.2 увеличение коэффициента  $n_1$  с 15 до

36 позволяет снизить коэффициент умножения УЧ2 до 12 вместо 29, а использование образа n = -2 при тех же данных дает возможность уменьшить значение до $n_2 = 2$ . Минимальное значение  $n_2$  для формирователя с  $f_0 = 24$  МГц и  $f_{Tmax2} = 350$ МГц (рис. 2.6.1) достижимо также при использовании образа n = -2 и составляет  $n_2 = 6$ .

Добиться минимально возможных значений как  $n_2$ , так и  $n_1$  можно за счет увеличения частоты ГОЧ и использования образов основной частоты ЦВС. Для формирователя со значениями  $f_0 = 72$  МГц и  $f_{Tmax1} = 1000$  МГц (рис. 2.6.2) допустимыми минимальными значениями коэффициентов умножения являются  $[n_2; n_1] = \{[8; 3], [6; 4], [4; 6], [3; 8]\}, а для формирователя со значениями <math>f_0 = 72$ МГц и  $f_{Tmax2} = 350$  МГц (рис. 2.6.3) возможны две комбинации  $[n_2; n_1] = \{[8; 3], [6; 4]\}.$ 

При расширении полосы частот выходного сигнала формирователя  $\Delta f_{\phi}$  диапазоны допустимых комбинаций коэффициентов  $[n_2;n_1]$  сужаются и, как следствие, число возможных точек частотного плана уменьшается. Например, число точек на рис. 2.6.1, равно 16 при  $\Delta f_{\phi} = 0,1$  ГГц и уменьшается до 6 при расширении полосы частот до значения  $\Delta f_{\phi} = 0,2$  ГГц.

Разработанный программный комплекс позволяет визуализировать и упростить частотное планирование формирователей сигналов, использующих прямой цифровой метод синтеза, а также выбрать оптимальные значения параметров таких формирователей с точки зрения получения минимального уровня СПМ фазового шума на выходе.

В качестве примера на рис. 2.6.4 приведены полученные с помощью программного комплекса области допустимых комбинаций коэффициентов умножения  $[n_2;n_1]$  формирователя при значениях  $f_0 = 10$ МГц,  $f_{\phi} = 3000$  МГц для  $|n| \le 3, K_{\text{ЦВСтin}} = 0,15, K_{\text{ЦВСтах}} = 0,35.$ 

Как следует из рис. 2.6.4, диапазоны (заштрихованные области) являются симметричными относительно прямой  $n_2(n_1) = n_1$ . Приведенные зависимости позволяют выбрать допустимые комбинации коэффициентов умножения УЧ1 и
УЧ2  $[n_2; n_1]$  при реализации формирователя с заданными значениями частоты ГОЧ  $f_0$  и выходной частоты  $f_{\Phi}$ .

Число возможных комбинаций коэффициентов  $[n_2; n_1]$  уменьшается при увеличении номера образа, а также при уменьшении диапазона значений  $[K_{\mu BCmin}; K_{\mu BCmax}]$ , как показано на рис. 2.6.5.



Рисунок 2.6.4 - Диапазоны допустимых комбинаций коэффициентов [n<sub>2</sub>;n<sub>1</sub>] для

основной частоты ЦВС и ее образов



Рисунок 2.6.5 - Диапазоны допустимых комбинаций коэффициентов [*n*<sub>2</sub>; *n*<sub>1</sub>] для основной частоты ЦВС и ее образов при *K*<sub>ЦВСтіп</sub>=0,2, *K*<sub>ЦВСтах</sub>=0,3



Рисунок 2.6.6 - Диапазоны допустимых комбинаций коэффициентов  $[n_2;n_1]$  для основной частоты ЦВС и ее образов при  $f_0 = 24$  МГц,  $f_{\phi} = 3000$  МГц,

 $K_{UBCmin} = 0,15, K_{UBCmax} = 0,35$ 

При увеличении частоты опорного генератора  $f_0$  области  $[n_2;n_1]$  смещаются к осям абсцисс и ординат (рис. 2.6.6), при этом число возможных комбинаций коэффициентов  $[n_2;n_1]$  также снижается. Кроме того, на рис. 2.6.5 показано, что максимально допустимая величина коэффициента  $n_1$  ограничена значением  $n_{1 don}$ , определяемым максимальной тактовой частотой используемого ЦВС.

Приведенные зависимости справедливы для множества положительных действительных значений коэффициентов умножения  $n_1$  и  $n_2$ . При реализации формирователей на практике, как правило, эти коэффициенты выбираются из множества натуральных чисел.

Разработанный алгоритм был применен при частотном планировании формирователя сигналов с ЦВС AD9910 при  $f_0 = 24$  МГц;  $f_{\phi} = 3000$  МГц;  $K_{\mu BCmin} = 0.2$ ;  $K_{\mu BCmax} = 0.3$ ;  $n_2 < 5$ . Результаты расчета сведены в табл. 2.6.1, из которой следует, что при использовании ЦВС AD9910 с максимальной тактовой частотой  $f_{Tmax} = 1000$  МГц и встроенным умножителем тактовой частоты возможны 17 вариантов построения формирователя сигналов с использованием образов основной частоты ЦВС.

| п                | 3    | 2    | -3   | -2   | 3    | -3   | -2   | 1    | 1   | 2    | 1    | 1    | -2   | -2   | 3    | 3    | -1   |
|------------------|------|------|------|------|------|------|------|------|-----|------|------|------|------|------|------|------|------|
| $n_1$            | 13   | 14   | 15   | 18   | 19   | 23   | 24   | 25   | 26  | 28   | 33   | 34   | 35   | 36   | 38   | 39   | 40   |
| $f_{\mathrm{T}}$ | 312  | 336  | 360  | 432  | 456  | 552  | 576  | 600  | 624 | 672  | 792  | 816  | 840  | 864  | 912  | 936  | 960  |
| КЦВС             | 0,21 | 0,23 | 0,22 | 0,26 | 0,29 | 0,28 | 0,26 | 0,25 | 0,2 | 0,23 | 0,26 | 0,23 | 0,21 | 0,26 | 0,29 | 0,21 | 0,22 |
| $n_2$            | 3    | 4    | 3    | 4    | 2    | 2    | 3    | 4    | 4   | 2    | 3    | 3    | 2    | 2    | 1    | 1    | 4    |

Таблица 2.6.1 - Варианты реализации частотного плана формирователя

Однако использование такого представления результатов частотного планирования формирователей сигналов в режиме образов основной частоты ЦВС является недостаточно удобным в плане выбора оптимальных комбинацией его коэффициентов ввиду их возможного множества. В связи с этим в работе [125] была представлена реализация предложенного алгоритма частотного планирования на языке программирования С++, учитывающая условие фильтрации образов (2.5.1). На рис. 2.6.7 показано окно соответствующей программы.

| Частота ГОЧ, МГц    | 24                     |      |
|---------------------|------------------------|------|
| Максимальная тактов | зая частота ftmax, МГц | 1000 |
| Минимальная тактова | ая частота ftmin, МГц  | 420  |
| Кцвс минимальный    | 0,15                   |      |
| Кцвс максимальный   | 0,35                   |      |
| п максимальное      | 3                      |      |
| Частота fф, МГц     | 3000                   |      |

Рисунок 2.6.7 - Интерфейс главного окна программы частотного планирования формирователей сигналов с фильтрацией образов основной частоты ЦВС

В программе в зависимости от типа ЦВС задаются исходные данные частотного планирования. Показанные на рисунке значения соответствуют применению ЦВС AD9910 при использовании генератора опорной частоты ГОЧ с частотой 24 МГц, и встроенного умножителя тактовой частоты. Кроме того, устанавливаются значения минимального и максимального  $K_{\text{ЦВС}}$ , определяющего соотношение основной и тактовой частоты ЦВС. Выбирается максимальное число образов основной частоты и выходная частота формирователя.

Результат расчета частотного плана экспортируется в новый файл приложения MSWord. Пример расчета частотного плана формирователя сигналов при заданных параметрах устройства, выдаваемый программой, представлен в табл. 2.6.2.

В таблице в виде строк представлены рассчитанные варианты комбинаций параметров частотного планирования. Первый и второй столбцы таблицы содержат значения коэффициентов умножения выходных и тактовых умножителей частоты. Следующие столбцы содержат рассчитанные значения номера используемого образа, основной частоты, коэффициента передачи  $K_{\text{ЦВС}}$ , частоты образа. Комбинации коэффициентов отсортированы по возрастанию коэффициента  $n_2$ . Это необходимо для быстрого поиска оптимальных вариантов частотного плана, размещаемых в начале таблицы.

Таблица 2.6.2. Результаты расчета частотного плана формирователя сигналов

| $n_2$ | $n_1$ | п  | $f_{\text{LIBC}}$ | $f_{\rm T}$ | K <sub>LIBC</sub> | $f_{\rm обрЦВС}$ |
|-------|-------|----|-------------------|-------------|-------------------|------------------|
| 2     | 19    | 3  | 132               | 456         | 0,289473          | 1500             |
| 2     | 22    | -3 | 84                | 528         | 0,159090          | 1500             |
| 2     | 23    | -3 | 156               | 552         | 0,282609          | 1500             |
| 3     | 19    | 2  | 88                | 456         | 0,192982          | 1000             |
| 3     | 13    | 3  | 64                | 312         | 0,205128          | 1000             |
| 3     | 15    | -3 | 80                | 360         | 0,222222          | 1000             |
| 3     | 18    | 2  | 136               | 432         | 0,314814          | 1000             |
| 3     | 23    | -2 | 104               | 552         | 0,188405          | 1000             |
| 3     | 24    | -2 | 152               | 576         | 0,263888          | 1000             |
| 4     | 18    | -2 | 114               | 432         | 0,263888          | 750              |
| 4     | 14    | 2  | 78                | 336         | 0,232142          | 750              |
| 4     | 11    | -3 | 42                | 264         | 0,159090          | 750              |
| 4     | 17    | -2 | 66                | 408         | 0,161764          | 750              |
| 4     | 24    | 1  | 174               | 576         | 0,302083          | 750              |

0 24 125 4 96 0,25 0 12 0,25 250 48 0 0 500 0 6 24 0,25 0

Разработанная программа позволяет упростить частотное планирование исследуемых формирователей сигналов и ускорить разработку и проектирование вновь разрабатываемых формирователей сигналов с использованием образов основной частоты ЦВС.

76

#### 2.7 Выводы

1. Получены математические модели выходного сигнала цифроаналогового преобразователя цифрового вычислительного синтезатора в режиме образы основной частоты, учитывающие эффект дискретизации и ошибки, вызванные усечением кода фазы и квантованием амплитуды. Установлено, что огибающие спектров сигналов ошибок полученных моделей изменяются от частоты по закону, соответствующему функции синус Котельникова, что позволяет сделать вывод о том, что при использовании образов основной частоты ЦВС относительный уровень паразитных спектральных составляющих и фазовых шумов устройства будет таким же, как и на основной частоте синтезатора.

2. Представлена обобщенная структурная схема формирователя сигналов с использованием образов основной частоты цифрового вычислительного синтезатора, для которой получены основные математические соотношения частот и коэффициентов умножения умножителей частоты устройства.

3. Для увеличения амплитуд образов основной частоты выходного сигнала цифро-аналогового преобразователя предложено использовать перераспределение энергии частотных составляющих в спектре выходного сигнала цифрового вычислительного синтезатора с помощью передискретизации, реализуемой введением в схему устройства преобразователя скважности и аналогового ключа. Для оценки эффективности предлагаемого решения проведено схемотехническое моделирование исследуемого устройства, показавшее возможность увеличения амплитуд образов с помощью эффекта передискретизации на 8-12 дБ.

4. Разработан алгоритм частотного планирования формирователя сигналов, использующего образы основной частоты цифрового вычислительного синтезатора, заключающийся в определении комбинаций допустимых значений коэффициентов умножения умножителей частоты, а также номера образа основной частоты.

5. На основе предложенного алгоритма в среде MathLAB разработан специализированный программный комплекс частотного планирования формирователей сигналов, использующих образы основной частоты цифровых вычислительных синтезаторов. Программа содержит модули расчета реализуемых на практике действительных и целочисленных комбинаций коэффициентов умножения умножителей частоты.

6. Для выбора оптимальных комбинаций коэффициентов звеньев формирователя сигналов, использующих образы основной частоты, на языке C++ разработана программа частотного планирования, учитывающая условие фильтрации образов и сортирующая комбинации коэффициентов устройства по возрастанию, что позволяет упростить частотное планирование исследуемых формирователей сигналов и ускорить разработку и проектирование вновь разрабатываемых устройств с использованием образов основной частоты цифрового вычислительного синтезатора.

## ГЛАВА З.МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ШУМОВЫХ ХАРАКТЕРИСТИК ЦИФРОВЫХ ВЫЧИСЛИТЕЛЬНЫХ СИНТЕЗАТОРОВ, ИСПОЛЬЗУЮЩИХ ОБРАЗЫ ОСНОВНОЙ ЧАСТОТЫ

#### 3.1 Математическая модель спектральной плотности мощности фазовых шумов цифровых вычислительных синтезаторов для основной частоты выходного сигнала

В п. 1.2 было показано, что для теоретического анализа шумовых характеристик различных радиоустройств широко используют аппроксимацию их СПМ фазовых шумов степенными функциями.

В [126] предложена обобщенная модель СПМ собственных фазовых шумов ЦВС для основной синтезируемой частоты, позволяющая с высокой степенью точности проводить моделирование их шумовых характеристик

$$S_{co\delta cms LJBC}(F) = \left(K_{LJBC}\right)^2 \left(a_1 \frac{10^{k_2}}{F^2} + a_2 \frac{10^{k_1}}{F} + 10^{k_4}\right) + 10^{k_3} + a_3 S_{\kappa s}, \qquad (3.1.1)$$

где  $K_{\mu BC} = f_{out}/f_T$  – коэффициент передачи ЦВС;  $f_{out}$  – основная выходная частота ЦВС; коэффициенты  $k_1$ ,  $k_2$ ,  $k_3$ ,  $k_4$ , определяющие уровень СПМ 1/F шума,  $1/F^2$  шума, естественной шумовой составляющей входных цепей ЦАП и естественной шумовой составляющей входных цепей ЦАП и естественной шумовой составляющей нагрузки;  $S_{\kappa g} = 2^{-2N-0.59} \left( \frac{f_{out}}{f_T^2} \right)$  – СПМ фазо-

вого шума квантования ЦАП; F – частота отстройки от несущего колебания; N – число разрядов ЦАП ЦВС. Чтобы устранить влияние размерности частоты, вводятся коэффициенты размерности  $a_1$ ,  $a_2$ ,  $a_3$ , равные соответственно 1 Гц<sup>2</sup>, 1 Гц, 1 Гц.

Теоретическому и экспериментальному исследованию свойств данной модели посвящен ряд работ [127-129].

Вычисление коэффициентов аппроксимации для данной модели возможно для любого из множества существующих на данный момент ЦВС. Для этого могут использоваться справочные, либо экспериментальные данные о СПМ фазовых шумов конкретного синтезатора, полученные для нескольких выходных частот при неизменном значении тактовой частоты.

Известны две методики расчета коэффициентов аппроксимации.

Первая состоит в том, что коэффициенты  $k_i$  модели СПМ фазового шума рассчитываются по следующим формулам:

$$k_{1} = \lg \left( \frac{10^{-S_{\partial E}(F, f_{IJBC \min})/10} F}{\left(\frac{f_{IJBC \min}}{f_{T}}\right)^{2} \cdot a_{2}} \right)_{npu \ F = 1000 \ \Gamma \text{II}}$$
(3.1.2)  
$$k_{2} = \lg \left( \frac{10^{-S_{\partial E}(F, f_{IJBC \min})/10} F^{2}}{\left(\frac{f_{IJBC \min}}{f_{T}}\right)^{2}} - \frac{10^{k_{1}} F}{a_{2}} \right)$$
(3.1.3)

$$\begin{pmatrix} \left(\frac{f_{\mu BC \min}}{f_T}\right)^2 & a_1 \\ & & \end{pmatrix}_{npu F=10 \Gamma \mu}$$

$$k_{3} = \lg \left( 10^{-S_{\delta \delta}(F, f_{\mathcal{U} BC\min})/10} - 2^{-2N-0.59} \frac{f_{\mathcal{U} BC\min}}{f_{T}^{2}} \cdot a_{3} \right)_{npu \ F=10^{6} \Gamma \mu}$$
(3.1.4)

$$k_{4} = \lg \left( \frac{10^{-S_{\partial \mathcal{E}}(F, f_{\mathcal{U}BC\max})/10} - 10^{k_{3}}}{\left(\frac{f_{\mathcal{U}BC\max}}{f_{T}}\right)^{2}} - 2^{-2N-0.59} \frac{a_{3}}{f_{\mathcal{U}BC\max}} \right)_{npu\ F=10^{6}\,\Gamma_{II}}$$
(3.1.5)

Коэффициент  $k_1$  определяет уровень фликкер-шумов 1/F при частоте отстройки 1 кГц. Величина  $k_2$  определяет уровень белого частотного шума  $1/F^2$ , который определяется для минимальной частоты отстройки F=10 Гц. Коэффициент  $k_3$  определяет уровень естественных шумов и находится при частоте отстройки в 1 МГц и минимальной выходной частоте ЦВС. Коэффициент  $k_4$  также определяет уровень естественных шумов, но при максимальной выходной частоте ЦВС и также находится при частоте отстройки в 1 МГц. Как видно из представленных формул, для расчета коэффициентов аппроксимации требуются экспериментальные значения СПМ фазовых шумов, по которым необходимо определить уровень фазовых шумов исследуемого ЦВС при некоторых фиксированных значениях отстройки для максимальной и минимальной выходных частот синтезатора.

Методика расчета данных коэффициентов и их расчетные значения, определенные для интегральных ЦВС фирмы Analog Devices, приведены в [130].

Коэффициенты аппроксимации шумовых характеристик ЦВС можно также вычислить с помощью уравнения регрессии. Многие современные математические программные пакеты, как, например, MathCAD, позволяют представить некоторую переменную величину в виде функции в базисе других переменных (степенных функций), то есть позволяют составить уравнение регрессии и на его основе вычислить требуемые коэффициенты аппроксимации.

Применение регрессии выборки данных линейной комбинацией функций вида  $\sum_{i=0}^{2} C_i F^{-i}$  для расчета коэффициентов аппроксимации шумовых характеристик ЦВС предложено и рассмотрено в работе [131].

Рассмотренная математическая модель СПМ фазовых шумов ЦВС (3.1.1) является основой для теоретических исследований их шумовых характеристик, а также выполненных на их основе устройств формирования сигналов.

В составе современных интегральных ЦВС довольно часто используется встроенный умножитель тактовой частоты на основе системы ФАПЧ. Его применение позволяет использовать в качестве источника тактовой частоты опорные низкочастотные кварцевые генераторы с частотой до нескольких десятков МГц. В гл. 2 предложена обобщенная структурная схема формирователя сигналов, в которой имеется данный умножитель тактовой частоты с коэффициентом умножения  $n_1$ .

Структурную схему интегральных ЦВС с встроенным умножителем тактовой частоты можно представить в виде, изображенном на рис. 3.1.1 [132].

81



Рисунок 3.1.1 - Структурная схема интегрального ЦВС со встроенным умножителем тактовой частоты на основе системы ФАПЧ

На схеме приняты следующие обозначения: ИФД – импульсно-фазовый детектор; ГУН – генератор, управляемый напряжением; ДПКД – делитель частоты с переменным коэффициентом деления  $N_2$ ;  $s_{roy}$ ,  $s_{\phi A \Pi Y}$ ,  $s_{\mu BC}$  - СПМ фазовых шумов ГОЧ, ФАПЧ и ЦВС;  $f_{roy}$ ,  $f_{cp}$ ,  $f_T$ ,  $f_{\mu BC}$  - частоты ГОЧ, сравнения ИФД, тактовой и основной выходной частот ЦВС.

В табл.3.1.1 приведены параметры современных интегральных ЦВС со встроенными умножителями тактовой частоты на основе системы ФАПЧ, выпускаемые передовой компанией в области прямого цифрового синтеза - Analog Devices.

Таблица 3.1.1- Параметры интегральных ЦВС со встроенными умножителями тактовой частоты на основе системы ФАПЧ

| Микросхема                                                | AD9854   | AD9859 | AD9910  | AD9911 | AD9912       | AD9913 | AD9914       | AD9915       | AD9957  | AD9958 |  |  |
|-----------------------------------------------------------|----------|--------|---------|--------|--------------|--------|--------------|--------------|---------|--------|--|--|
| Параметр                                                  | мин макс |        |         |        |              |        |              |              |         |        |  |  |
| Тактовая частота при<br>отключенном умножи-<br>теле, МГц  | 0-300    | 1-400  | 60-1000 | 1-500  | 250-<br>1000 | 250    | 500-<br>3500 | 500-<br>2500 | 60-1000 | 1-500  |  |  |
| Тактовая частота при<br>подключенном умножи-<br>теле, МГц | 5-75     | 4-100  | 3,2-60  | 10-125 | 11-200       | 250    | 9,5-125      | 9,5-125      | 3,2-60  | 10-125 |  |  |
| Коэффициент умноже-<br>ния ФАПЧ (N <sub>2</sub> ДПКД)     | 4-20     | 4-20   | 12-127  | 4-20   | 4-66         | 1-64   | 8-255        | 8-255        | 12-127  | 4-20   |  |  |
| Разрядность ЦАП                                           | 12       | 10     | 14      | 10     | 14           | 10     | 12           | 12           | 14      | 10     |  |  |

Как видно из представленной таблицы, коэффициенты умножения встроенных в микросхемы ЦВС умножителей частоты на основе системы ФАПЧ могут достигать 255.

Модель СПМ фазовых шумов ЦВС с встроенным умножителем тактовой частоты на основе системы ФАПЧ [133-137] имеет вид

$$S(F) = S_{\phi_{A\Pi \Psi}}(F)K_{IIBC}^2 + S_{IIBC}(F), \qquad (3.1.6)$$

где

$$S_{\phi A\Pi \Psi}(F) = \left(S_{\Gamma O \Psi}(F) + S_{\Pi K \Pi}(F) + S_{\Pi \phi \Pi}(F)\right) H_{31}(F)^{2} + S_{\Gamma V H}(F) H_{32}(F)^{2}$$
(3.1.7)

- СПМ фазовых шумов умножителя тактовой частоты на основе системы ФАПЧ,  $S_{roy}(F), S_{ДПКД}(F), S_{HФД}(F), S_{ГУН}(F), S_{ЦВС}(F)$  - СПМ фазовых шумов ГОЧ, ДПКД, ИФД, ГУН, ЦВС;  $H_{31}(p)=H(p)/(1+H(p))$  - передаточная функция петли ФАПЧ по внешним шумам;  $H_{32}(p)=1/(1+H(p))$  - передаточная функция петли ФАПЧ по внутренним шумам;  $H(p)=K_{\phi HY}(p)\cdot n_1\cdot S_{\Gamma YH}/p$  – передаточная функция разомкнутой петли ФАПЧ;  $K_{\phi HY}(p)$  – передаточная функция ФНЧ петли ФАПЧ;  $S_{\Gamma YH}$ – крутизна модуляционной характеристики ГУН; p – оператор Лапласа.

В случаях, когда встроенный умножитель тактовой частоты на основе системы ФАПЧ отключен, т.е. его коэффициент умножения равен 1, моделирование СПМ фазовых шумов формирователя проводится в соответствии с выражением

$$S(F) = S_{\Gamma O \Psi}(F) K_{\text{LBC}}^2 + S_{\text{LBC}}(F).$$
(3.1.8)

В дальнейшем, на основании представленного выражения (3.1.1), разработаем математическую модель СПМ фазовых шумов ЦВС на образах основной частоты синтезатора.

# 3.2 Модель спектральной плотности мощности фазовых шумов цифровых вычислительных синтезаторов, использующих образы основной частоты

Воспользуемся математической моделью СПМ фазовых шумов ЦВС для основной синтезируемой частоты (3.1.1). Согласно данной модели, имеются следующие компоненты фазового шума ЦВС: шум квантования, фазовый фликкерный шум 1/F, белый частотный шум  $1/F^2$ , а также белый частотный шум, определяющий шум нагрузки. Требуется оценить изменения каждого из данных компонентов фазового шума при переходе от применения основной частоты ЦВС к использованию ее образов.

Согласно полученным во 2 гл. результатам, огибающая спектра выходного сигнала ЦАП ЦВС и спектров сигналов его ошибок изменяется в соответствии с частотной характеристикой ЦАП  $K_{\mu A\Pi}(f) = \sin\left(\pi \frac{f}{f_T}\right) / \left(\pi \frac{f}{f_T}\right)$ , поэтому отношение сигнал/шум устройства при использовании побочных компонентов спектра

будет меньше, то есть СПМ фазового шума увеличивается обратно пропорционально коэффициенту  $K^2_{LAII}$ .

Проведем анализ влияния частотной характеристики ЦАП на составляющие фазового шума ЦВС.

В [8] указывается, что фазовый шум ЦВС, обусловленный эффектом квантования, для образов основной частоты остается таким же, как и для основного выходного сигнала синтезатора. В связи с этим можно сделать вывод о том, что СПМ фазового шума квантования обратно-пропорциональна коэффициенту  $K^2_{ЦАП}$ вследствие уменьшения амплитуд образов и может быть определена выражением

$$S_{\kappa_{\theta}\_o\delta p} = 2^{-2N-0.59} \left( \frac{f_{out}}{f_{\tau}^2} \right) \left( \frac{\left( \pi \frac{nf_T \pm f_{out}}{f_T} \right)}{\sin\left( \pi \frac{nf_T \pm f_{out}}{f_T} \right)} \right)^2, \qquad (3.2.1)$$

Естественная составляющая СПМ фазового шума  $10^{k3}$ , определяемая шумами нагрузки, не зависит от коэффициента передачи ЦАП, поэтому вследствие уменьшения амплитуд образов СПМ фазового шума данной составляющей также является обратно пропорциональной коэффициенту  $K^2_{IIAII}$ .

Обратно пропорциональные зависимости шумов квантования и естественной составляющей фазовых шумов нагрузки от коэффициентов  $K^2_{IAII}$  подтверждается исследованиями спектров ошибок выходного сигнала ЦВС, выполненными во второй главе.

Таким образом, проведенный анализ показал, что все составляющие фазового шума ЦВС имеют одинаковую зависимость от коэффициента передачи ЦАП [138-143]. В результате выражение для СПМ фазовых шумов ЦВС, использующих образы основной частоты принимает вид

$$S_{\mu BC_{o}o \delta p}(F) = \left[ \left( \frac{f_{\mu BC}}{f_T} \right)^2 \left( \frac{a_1 \cdot 10^{k_2}}{F^2} + \frac{a_2 \cdot 10^{k_1}}{F} + 10^{k_4} \right) + 10^{k_3} + a_3 \cdot 2^{-2N - 0.59} \left( \frac{f_{\mu BC}}{f_T^2} \right) \right] \cdot \left( \left( \pi \frac{|nf_T + f_{\mu BC}|}{f_T} \right) \right) / \sin \left( \pi \frac{|nf_T + f_{\mu BC}|}{f_T} \right) \right)^2, \quad (3.2.2)$$

где  $k_1$ ,  $k_2$ ,  $k_3$ ,  $k_4$  – коэффициенты, определяющие уровень СПМ 1/*F* шума, 1/*F*<sup>2</sup> шума, естественной шумовой составляющей входных цепей ЦАП и сопротивления нагрузки; *F* – частота отстройки от несущей; *N* –разрядность ЦАП ЦВС,  $a_1$ ,  $a_2$ ,  $a_3$  – коэффициенты, равные соответственно 1 Гц<sup>2</sup>, 1 Гц, 1 Гц.

С учетом фазовых шумов ГОЧ математическую модель СПМ фазовых шумов на выходе ЦВС, использующих образы основной частоты, можно записать как

$$S_{\mu B Co \delta p_{out}}(F) = \left(n + K_{\mu B C}\right)^2 S_{\Gamma O Y}(F) + S_{\mu B Co \delta p}(F)$$
(3.2.3)

Для исследования свойств данной модели требуется провести расчет частотного плана формирователя сигналов согласно алгоритму частотного планирования, изложенному в гл. 2. В табл. 3.2.1 приведены результаты расчета частотного плана ЦВС AD9910 для нескольких значений его тактовой частоты.

| Тактовая частота | 100 МГц                                                     | 300 МГц | 900 МГц |  |  |  |  |  |  |
|------------------|-------------------------------------------------------------|---------|---------|--|--|--|--|--|--|
| Номер образа, n  | Частота образа, $f_{oбp}$ , МГц при К <sub>ЦВС</sub> = 0,25 |         |         |  |  |  |  |  |  |
| -3               | 275                                                         | 825     | 2475    |  |  |  |  |  |  |
| -2               | 175                                                         | 525     | 1575    |  |  |  |  |  |  |
| -1               | 75                                                          | 225     | 675     |  |  |  |  |  |  |
| 0                | 25                                                          | 75      | 225     |  |  |  |  |  |  |
| 1                | 125                                                         | 375     | 1125    |  |  |  |  |  |  |
| 2                | 225                                                         | 675     | 2025    |  |  |  |  |  |  |
| 3                | 325                                                         | 975     | 2925    |  |  |  |  |  |  |

Таблица 3.2.1- Результаты частотного планирования формирователя сигналов с ЦВС AD9910 для различных значений тактовой частоты

С использованием математической модели (3.2.2) и выражения (3.1.8) проведено моделирование СПМ фазовых шумов ЦВС, использующих образы основной частоты, результаты которого представлены на рис. 3.2.1 – 3.2.3 для тактовых частот 100, 300 и 900МГц при использовании интегрального синтезатора AD9910.



Рисунок 3.2.1 - СПМ фазовых шумов ЦВС для основной частоты *n* = 0, и образов *n* = 1, -1, -2, 3, -3 при тактовой частоте100 МГц, и *K*<sub>ЦВС</sub> = 0,25; (а) – исходные шумовые характеристики; (б) – нормированные от частот образов к основной частоте



Рисунок 3.2.2 - СПМ фазовых шумов ЦВС для основной частоты *n* = 0, и образов *n* = 1, -1, -2, 3, -3 при тактовой частоте 300 МГц, и *K*<sub>ЦВС</sub> = 0,25; (а) – исходные шумовые характеристики; (б) – нормированные от частот образов к

основной частоте



Рисунок 3.2.3 - СПМ фазовых шумов ЦВС для основной частоты *n* = 0, и образов *n* = 1, -1, -2, 3, -3 при тактовой частоте 900 МГц, и *K*<sub>ЦВС</sub> = 0,25; (а) – исходные шумовые характеристики; (б) – нормированные от частот образов к основной частоте

Из представленных графических зависимостей на рисунках 3.2.1 (a), 3.2.2 (a), 3.2.3 (a) видно, что фазовые шумы ЦВС на основной частоте меньше, чем при использовании частот образов. Однако при одинаковой тактовой частоте при использовании различных номеров образов на выходе синтезатора получаются раз-

87

личные частоты. При нормировании шумовых характеристик к одинаковой частоте уровни фазовых шумов становятся одинаковыми (соответствующие зависимости обозначены буквой (б)).

На рис. 3.2.4 приведены зависимости СПМ фазовых шумов ЦВС, использующих образы основной частоты, от коэффициента передачи синтезатора при фиксированной частоте отстройки F = 100 кГц.



Рисунок 3.2.4– Зависимость СПМ фазовых шумов ЦВС АD9910, использующих образы основной частоты, от  $K_{\text{IIBC}}$  при частоте отстройки F = 100 кГц

Из данных зависимостей видно, что рост  $K_{\mu BC}$  для основной частоты и положительных номеров образов приводит к росту СПМ фазового шума ЦВС, несмотря на увеличение амплитуд сигналов с частотами образов вследствие влияния огибающей спектра. Это можно объяснить ростом выходной частоты ЦВС относительно тактовой. В случае отрицательных номеров образов с ростом  $K_{\mu BC}$  наблюдается снижение уровня фазовых шумов. Данное явление объясняется одновременным увеличением амплитуд сигналов с частотами отрицательных образов и уменьшением выходной частоты образов относительно тактовой частоты.

### 3.3 Экспериментальная проверка математической модели шумовых характеристик цифровых вычислительных синтезаторов на образах основной частоты

Проведем экспериментальную проверку математической модели СПМ фазовых шумов ЦВС (3.2.2), использующих образы основной частоты [144-147].

Для экспериментальных исследований СПМ фазовых шумов ЦВС, использующих образы основной частоты, разработана измерительная установка, представленная на рис. 3.3.1. Основу данной установки составляет отладочный модуль ЦВС AD9910, внешний вид которого изображен на рис. 3.3.2. Данная отладочная плата позволяет сформировать квазигармонические сигналы с основной выходной частотой синтезатора до 450 МГц. Имеется отдельный вход для подключения внешнего генератора тактовой частоты, максимальная частота которого может составлять 1 ГГц. К выходам отладочного модуля могут подключаться сменные фильтры, выделяющие либо основную синтезируемую частоту с помощью ФНЧ, либо ее образ с помощью ПФ.



Рисунок 3.3.1- Упрощенная схема измерительной установки для исследования СПМ фазовых шумов ЦВС, использующих образы основной частоты



Рисунок 3.3.2 – Отладочный модуль ЦВС АD9910 (а) и модуль его управления на микроконтроллере STM32 (б)

Питание отладочного модуля осуществляется от отдельного стабилизированного блока питания с выходным напряжением в 5 В. Управление ЦВС реализуется с помощью микроконтроллера STM32. Для установки тактовой и основной выходной частот, а также параметров встроенного умножителя тактовой частоты используется персональный компьютер с программным обеспечением AD9910 Evaluation Software, модифицированным для применения интерфейса RS232, предназначенного для связи с микроконтроллером.

В качестве ГОЧ используется генератор сигналов SMA100A. Его основными особенностями является достаточно низкий уровень фазовых шумов и возможность перестройки в широком диапазоне частот.

Анализатор сигналов и спектра R&S®FSUP8 Signal Source Analyzer позволяет провести как анализ спектральных характеристик формирователей сигналов, так и экспериментальное измерение СПМ фазовых шумов анализируемого сигнала с максимальной амплитудой. Поэтому для проведения измерения СПМ фазовых шумов на образах основной частоты ЦВС необходимо применять полосовые фильтры, центральная частота которых равна частоте исследуемой частоты образа, а полоса пропускания достаточна для проведения измерений и равна, как минимум, 2 МГц по уровню минус 3 дБ. Рабочий диапазон данного анализатора спектра составляет полосу частот от 20 Гц до 8 ГГц, что позволяет достаточно просто осуществить прямое измерение СПМ фазовых шумов ЦВС как на основной частоте, так и на ее образах.

Применяемый ЦВС AD9910 обладает следующими параметрами:

диапазон тактовых частот при отключенном тактовом умножителе 60 МГц
 1 ГГц;

- рабочие диапазоны частот ГУН встроенного тактового умножителя на основе системы ФАПЧ 400-460, 455-530, 530-615, 650-790, 760-875, 920-1030 МГц;

- диапазон опорных частот при подключенном тактовом умножителе 3,2 – 60 МГц;

- разрядность ЦАП ЦВС АD9910 14 бит.

С использованием данной измерительной установки получен ряд экспериментальных зависимостей СПМ фазовых шумов ЦВС AD9910 от частоты отстройки при отключенном встроенном умножителе тактовой частоты на основе системы ФАПЧ. Одновременно, для тех же параметров ЦВС AD9910, проводилось моделирование шумовых характеристик на образах основной частоты с использованием модели СПМ фазовых шумов (3.2.2) и учитывались шумовые характеристики ГОЧ в соответствии с выражением (3.2.3). Значения коэффициентов аппроксимации для данного ЦВС составляют:  $k_1 = -9,9$ ;  $k_2 = -9,48$ ;  $k_3 = -15,4$ ;  $k_4 = -15,2$ .

Для уточнения модели СПМ фазовых шумов опорного генератора SMA100A проведено экспериментальное измерение его шумовых характеристик для частот 100, 300 МГц. Пример аппроксимирующей функции СПМ фазовых шумов данного генератора на частоте 100 МГц имеет вид

$$S_{\Gamma O Y}(F) = \frac{10^{-8}}{F^3} + \frac{10^{-9.4}}{F^2} + \frac{10^{-12.5}}{F} + 10^{-15.8}$$
(3.3.1)

Полученные теоретические и экспериментальные зависимости шумовых характеристик ГОЧ, представленные на рис.3.3.3, имеют хорошее совпадение.



Рисунок 3.3.3 – СПМ фазовых шумов ГОЧ SMA100A при выходной частоте а) 100 МГц, б) 300 МГц. 1- эксперимент, 2 – аппроксимация



Рисунок 3.3.4 - СПМ фазовых шумов ЦВСАD9910 на основной частоте 25 МГц (*n* = 0) при тактовой частоте 100 МГц:

1 –эксперимент, 2 – моделирование



Рисунок 3.3.5 - СПМ фазовых шумов ЦВСАD9910 на частоте образа 75 МГц (*n* =-1) при тактовой частоте 100 МГц: 1 - эксперимент, 2 –моделирование



Рисунок 3.3.6 - СПМ фазовых шумов ЦВСАD9910 на частоте образа 125 МГц (*n* =1) при тактовой частоте 100 МГц (К<sub>ЦВС</sub> = 0,25): 1 - эксперимент, 2 –

моделирование



Рисунок 3.3.7 - СПМ фазовых шумов ЦВСАD9910 на основной частоте 35 МГц (*n* =0) при тактовой частоте 120 МГц (при К<sub>ЦВС</sub> = 0,291):1 - эксперимент, 2 – моде-

#### лирование



Рисунок 3.3.8 - СПМ фазовых шумов ЦВСАD9910 на частоте образа 275 МГц (*n* =2) при тактовой частоте 120 МГц (при К<sub>ЦВС</sub> = 0,291): 1 - эксперимент, 2 – моде-

лирование





Рисунок 3.3.9 - СПМ фазовых шумов ЦВС AD9910 на образах основной частоты при тактовой частоте 100МГц, *n* = 0, -1, -2, -3. (сплошные точки – моделирование,

штриховые линии с символом окружности – эксперимент)



Рисунок 3.3.10 - СПМ фазовых шумов ЦВС AD9910 на образах основной частоты при тактовой частоте 100МГц, *n* = 0, 1, 2. (сплошные точки – моделирование, штриховые линии с символом окружности – эксперимент)

В результате анализа полученных зависимостей установлено, что с увеличением номера образа уровень фазовых шумов ЦВС увеличивается как для экспериментальных характеристик, так и для полученных в результате математического моделирования. Кроме того, видно, что для образов основной частоты результаты эксперимента и моделирования совпадают, но имеется небольшая погрешность моделирования, которая на отдельных отстройках частоты максимально достигает 4-5 дБ. Данный факт позволяет сделать вывод о том, что разработанная математическая модель СПМ фазовых шумов ЦВС на образах основной частоты может применяться в практических исследованиях, инженерных и конструкторских расчетах, при выборе оптимальной с точки зрения уровня фазовых шумов структуре формирователя сигналов.

В большинстве случаев на практике в качестве ГОЧ используется кварцевый генератор, частота которого повышается встроенным в интегральный ЦВС умножителем частоты на основе системы ФАПЧ. В этом случае помимо собственных фазовых шумов ЦВС необходимо также оценить влияние тактового умножителя частоты на уровень фазовых шумов ЦВС при использовании образов основной частоты.

## 3.4 Влияние умножителя тактовой частоты на шумовые характеристики формирователя сигналов с применением образов основной частоты цифровых вычислительных синтезаторов

Составим математическую модель СПМ фазовых шумов интегральных ЦВС, использующих образы основной частоты, со встроенным умножителем тактовой частоты на основе системы ФАПЧ с помощью выражений (3.1.6), (3.1.7) и (3.2.2).

Преобразуем выражение (3.1.6) в математическую модель СПМ фазовых шумов ЦВС, использующих образы основной частоты, с встроенным умножителем тактовой частоты на основе системы ФАПЧ [135-136]

$$S_{\mu BCo\delta p\_Gbix}(F) = S_{\phi A\Pi \Psi}(F)(n + K_{\mu BC})^2 + S_{\mu BC\_o\delta p}(F).$$
(3.4.1)

Запишем шумовые вклады, вносимые звеньями системы ФАПЧ, с учетом квадратов их коэффициентов умножения n1, n2,  $| n + K_{LBC} |$ .

Вклад ГОЧ:

$$S_{\Gamma O \mathcal{Y}_{GK}}(F) = S_{\Gamma O \mathcal{Y}}(F) \cdot n_1^2 \cdot (n + K_{\text{LBC}})^2 \cdot n_2^2, \qquad (3.4.2)$$

Вклад ФАПЧ

$$S_{\phi_{A\Pi}\Psi_{\theta\kappa}}(F) = S_{\phi_{A\Pi}\Psi}(F) \cdot \left(n + K_{\text{LBC}}\right)^2 \cdot n_2^2, \qquad (3.4.3)$$

$$S_{\mathcal{U}BCo\deltap\_GK}(F) = S_{\mathcal{U}BCo\deltap}(F) \cdot n_2^2, \qquad (3.4.4)$$

Проведем математическое моделирование СПМ фазовых шумов интегральных ЦВС, использующих образы основной частоты, с умножителем тактовой частоты на основе системы ФАПЧ. В качестве интегральных ЦВС рассмотрим микросхемы AD9910 и AD9914. Их параметры представлены в табл.3.1.1.

Кроме того, требуется рассчитать основную синтезируемую частоту  $f_{ЦBC}$ , и проверить условие использования ее образов в соответствии с выражением (1.4.3). Для этого необходимо воспользоваться алгоритмом и программой частотного планирования формирователей сигналов, использующих образы основной частоты ЦВС. При расчете будут использованы только те варианты частотного планирования, в которых коэффициент умножения выходного умножителя частоты равен 1 ( $n_2 = 1$ ), т.е. выходной транзисторный умножитель частоты отсутствует.

Для моделирования использованы следующие параметры формирователей сигналов:

- для ЦВС АD9910: тактовая частота  $f_T \leq 1000$ МГц, частота ГОЧ  $f_{\Gamma O Y} = 24$ МГц, требуемая частота образов  $f_{Ц B C \ o \delta p} = 1500, 3000$  МГц;

- для ЦВС АD9914: тактовая частота  $2400 \le f_T \le 2500$ МГц, частоты ГОЧ  $f_{\Gamma O \Psi} = 24$  МГц,  $f_{\Gamma O \Psi} = 96$  МГц, требуемая частота образов  $f_{\mathcal{U} B C\_o \delta p} = 3000, 6500$ МГц.

В табл. 3.4.1, 3.4.2 приведены результаты частотного планирования формирователей сигналов с ЦВС AD9910 и AD 9914, использующих образы основной частоты.

|                       |    |                                |                                |                  | f <sub>гоч</sub> =                 | = 24 M | Гц |                                |                               |       |                                    |
|-----------------------|----|--------------------------------|--------------------------------|------------------|------------------------------------|--------|----|--------------------------------|-------------------------------|-------|------------------------------------|
| <i>n</i> <sub>1</sub> | п  | <i>f<sub>цвс</sub>,</i><br>МГц | <i>f</i> <sub>T</sub> ,<br>МГц | К <sub>ЦВС</sub> | <i>f<sub>ЦBC_обр</sub>,</i><br>МГц | $n_1$  | Ν  | <i>f<sub>цвс</sub>,</i><br>МГц | <i>f<sub>T</sub></i> ,<br>МГц | КЦВС  | <i>f<sub>ЦBC_обр</sub>,</i><br>МГц |
| 13                    | -5 | 60                             | 312                            | 0,192            | 1500                               | 29     | 4  | 216                            | 696                           | 0,31  | 3000                               |
| 15                    | 4  | 60                             | 360                            | 0,167            | 1500                               | 30     | 4  | 120                            | 720                           | 0,167 | 3000                               |
| 17                    | -4 | 132                            | 408                            | 0,324            | 1500                               | 33     | -4 | 168                            | 792                           | 0,219 | 3000                               |
| 19                    | 3  | 132                            | 456                            | 0,289            | 1500                               | 34     | -4 | 264                            | 816                           | 0,324 | 3000                               |
| 22                    | -3 | 84                             | 528                            | 0,159            | 1500                               | 34     | -2 | 132                            | 816                           | 0,162 | 1500                               |
| 23                    | -3 | 136,4                          | 552                            | 0,247            | 1500                               | 35     | -2 | 180                            | 840                           | 0,214 | 1500                               |
| 24                    | 5  | 120                            | 576                            | 0,208            | 3000                               | 36     | -2 | 228                            | 864                           | 0,264 | 1500                               |
| 26                    | -5 | 120                            | 624                            | 0,192            | 3000                               | 37     | -2 | 276                            | 888                           | 0,311 | 1500                               |
| 27                    | 2  | 204                            | 648                            | 0,315            | 1500                               | 38     | 3  | 264                            | 912                           | 0,289 | 3000                               |
| 28                    | 2  | 156                            | 672                            | 0,232            | 1500                               | 39     | 3  | 192                            | 936                           | 0,205 | 3000                               |
| 29                    | 2  | 108                            | 696                            | 0,155            | 1500                               |        |    |                                |                               |       |                                    |

Таблица 3.4.1- Частотный план ЦВС AD9910

Таблица 3.4.2 - Частотный план ЦВС AD9914

|       | $f_{\Gamma O Y} = 24 \ \mathrm{M} \Gamma$ ц |                                |                                |       |                                    |       |    |                                |                                |       |                                    |  |  |  |  |
|-------|---------------------------------------------|--------------------------------|--------------------------------|-------|------------------------------------|-------|----|--------------------------------|--------------------------------|-------|------------------------------------|--|--|--|--|
| $n_1$ | п                                           | <i>f<sub>цвс</sub>,</i><br>МГц | <i>f</i> <sub>T</sub> ,<br>МГц | КЦВС  | <i>f<sub>ЦBC_обр</sub>,</i><br>МГц | $n_1$ | Ν  | <i>f<sub>цвс</sub>,</i><br>МГц | <i>f</i> <sub>T</sub> ,<br>МГц | Кцвс  | <i>f<sub>цвC_обр</sub>,</i><br>МГц |  |  |  |  |
| 100   | 1                                           | 600                            | 2400                           | 0,25  | 3000                               | 100   | -3 | 848                            | 2400                           | 0,353 | 6500                               |  |  |  |  |
| 101   | 1                                           | 576                            | 2424                           | 0,238 | 3000                               | 101   | -3 | 844                            | 2424                           | 0,348 | 6500                               |  |  |  |  |
| 102   | 1                                           | 552                            | 2448                           | 0,225 | 3000                               | 102   | -3 | 844                            | 2448                           | 0,344 | 6500                               |  |  |  |  |
| 103   | 1                                           | 528                            | 2452                           | 0,215 | 3000                               |       |    |                                |                                |       |                                    |  |  |  |  |
| 104   | 1                                           | 504                            | 2426                           | 0,207 | 3000                               |       |    |                                |                                |       |                                    |  |  |  |  |
|       | $f_{\Gamma O Y} = 96 \text{ M} \Gamma$ ц    |                                |                                |       |                                    |       |    |                                |                                |       |                                    |  |  |  |  |
| 25    | 1                                           | 600                            | 2400                           | 0,25  | 3000                               | 25    | -3 | 700                            | 2400                           | 0,291 | 6500                               |  |  |  |  |
| 26    | 1                                           | 504                            | 2496                           | 0,201 | 3000                               |       |    |                                |                                |       |                                    |  |  |  |  |

Из табл. 3.4.1-3.4.4 видно, что использование образов основной частоты затруднительно в тех случаях, когда на выходе ЦВС требуется получить конкретное значение синтезируемой частоты, поскольку варианты частотного плана, обеспечивающие условие (2.4.1), практически отсутствуют. В связи с этим, для увеличения количества доступных вариантов частотного планирования формирователя сигналов, соответствующих случаям использования образов основной частоты ЦВС, необходимо на выходе ЦВС использовать транзисторный умножитель частоты с небольшим коэффициентом умножения.

С использованием параметров интегральных ЦВС, результатов частотного планирования формирователей сигналов, использующих образы основной частоты ЦВС, разработанной математической модели (3.2.2), выражений (3.1.6) - ( 3.1.8), характеризующих шумовые свойства встроенного умножителя тактовой частоты на основе системы ФАПЧ, а также генератора опорной частоты, проведе-

но моделирование СПМ фазовых шумов формирователей сигналов с интегральными ЦВС AD9910 и AD9914 и определены шумовые вклады основных функциональных звеньев устройств, позволяющие выявить наиболее «шумящие» участки схемы формирования сигналов. Результаты моделирования представлены на рис.3.4.1-3.4.2.



Рисунок 3.4.1 - а) СПМ фазовых шумов формирователя, использующего образы основной частоты ЦВС АD9910, и б) вклады звеньев при  $n_1 = 12$ , n = 5;  $f_{\text{ЦВС_обр}} = 1500 \text{ МГц}$ ,  $f_{\Gamma O \Psi} = 24 \text{ МГц}$ 



Рисунок 3.4.2 - а) СПМ фазовых шумов формирователя, формирователя, использующего образы основной частоты ЦВС AD9910, и б) вклады звеньев при  $n_1 = 39$ ,  $n = 3; f_{ЦВС \ oбp} = 3000 \text{ M}\Gamma$ ц,  $f_{\Gamma O Y} = 24 \text{ M}\Gamma$ ц

Из представленных шумовых характеристик видно, что при одинаковых выходных частотах образов основной частоты ЦВС, СПМ фазовых шумов формирователей сигналов с умножителями тактовой частоты практически одинаковые. Согласно рис. 3.4.16 и 3.4.26 установлено, что наибольший вклад в СПМ фазовых шумов формирователей сигналов с интегральными ЦВС, использующими образы основной частоты, вносит умножитель тактовой частоты на основе системы ФАПЧ. При этом шумовой вклад фазового детектора петли ФАПЧ минимален.

Проведем аналогичное моделирование для интегрального ЦВС AD9914.

Поскольку частота сравнения фазового детектора системы ФАПЧ встроенного умножителя тактовой частоты данной микросхемы равна 100 МГц, возможно использование и высокочастотных ГОЧ. Результаты расчета СПМ фазовых шумов формирователя сигналов и вклады его звеньев для  $f_{\Gamma O \Psi} = 24$  МГц, 96 МГц, и требуемых выходных частот  $f_{\mu BC_o o b p} = 3000$  МГц, 6500 МГц показаны на рисунках 3.4.3 - 3.4.6.



Рисунок 3.4.3 - а) СПМ фазовых шумов формирователя, использующего образы основной частоты ЦВС АD9914, и б) вклады звеньев при  $n_1 = 104$ , n = 1;  $f_{\text{ЦВС_обр}} = 3000 \text{ M}\Gamma\mu$ ,  $f_{\Gamma O \Psi} = 24 \text{ M}\Gamma\mu$ 



Рисунок 3.4.4 - а) СПМ фазовых шумов формирователя, использующего образы основной частоты ЦВС AD9914, и б) вклады звеньев при  $n_1 = 102$ , n = -3;  $f_{\text{ЦВС_обр}} = 6500 \text{ МГц}$ ,  $f_{\Gamma O Y} = 24 \text{ МГц}$ :



Рисунок 3.4.5 - СПМ фазовых шумов формирователя, использующего образы основной частоты ЦВС АD9914 при  $f_{\text{ЦВС_обр}} = 3000 \text{ M}$ Гц, и вклады звеньев при  $n_1 = 25$ , n = 1,  $f_{\Gamma O \Psi} = 96 \text{ M}$ Гц - (a); СПМ фазовых шумов ЦВС AD9914 при  $f_{\text{ЦВС_обр}} = 6500 \text{ M}$ Гц, и вклады звеньев при  $n_1 = 25$ , n = -3,  $f_{\Gamma O \Psi} = 96 \text{ M}$ Гц - (б)

Из полученных графических зависимостей видно, что во всех рассмотренных случаях наибольший вклад в результирующую СПМ фазовых шумов вносит ГОЧ, который увеличивается с ростом частот образов выходного сигнала ЦВС.

101

Наименьший шумовой вклад в соответствии с рис. 3.4.1-3.4.6 также вносит фазовый детектор встроенного умножителя тактовой частоты на основе системы ФАПЧ. Применение ГОЧ с частотой, в четыре раза большей, чем в предыдущих случаях (96 МГц), позволило уменьшить коэффициент умножения встроенного умножителя тактовой частоты на основе системе ФАПЧ и, соответственно, улучшить шумовые характеристики всего формирователя сигналов на 18 дБн/Гц.

## 3.5 Влияние выходного умножителя частоты на уровень фазовых шумов формирователя сигналов с использованием образов основной частоты

Ранее было показано, что применение на выходе ЦВС после полосового фильтра умножителя частоты с небольшим коэффициентом умножения, равным, например, двум или трем, позволяет существенно увеличить число вариантов частотного планирования формирователя сигналов, использующего образы основной частоты ЦВС.

Рассчитаем шумовые характеристики формирователя сигналов, использующего образы основной частоты ЦВС и содержащего выходной транзисторный умножитель частоты, эквивалентная схема которого представлена на рис. 3.5.1.



Рисунок 3.5.1 - Структурная схема формирователя сигналов с ЦВС, использующим образы основной частоты и выходным транзисторным умножителем частоты

Умножитель УЧ2 в общем случае реализуется в виде последовательного соединения умножителей частоты на транзисторах с коэффициентами умножения  $n_{2i}$ , равными 2, 3 или 5, причем  $n_2 = \prod n_{2i} [148]$ . В случаях, когда коэффициент умножения данного умножителя некратный 2, 3 или 5, вместо транзисторных каскадов необходимо использовать умножитель на системе ФАПЧ.

Умножитель УЧ1 может быть также выполнен в виде отдельных дискретных транзисторных умножителей или может быть встроен в интегральный ЦВС и выполнен на основе системы ФАПЧ, шумовые свойства которого описаны в п. 3.4.

Математическая модель СПМ фазовых шумов сигнала на выходе умножителя УЧ2, выполненного в виде последовательно включенных транзисторных умножителей иимеющего коэффициент умножения *n*<sub>2</sub>, имеет вид

$$S_{yy_2}(F) = S_{yy_{21}}(F) \cdot \frac{n_2^2}{n_{21}^2} + S_{yy_{22}}(F) \cdot \frac{n_2^2}{n_{21}^2 n_{22}^2} + \dots, \qquad (3.5.1)$$

Где  $S_{yq_{2i}}(F)$  - СПМ фазовых шумов *i*-того транзисторного умножителя частоты с коэффициентом умножения  $n_{1i}$ .

СПМ фазовых шумов умножителя выходной частоты ЦВС на транзисторах определяется как

$$S_{yq_{2i}}(F) = n_{2i}^2 \frac{4kT}{P_{ci}} \left[ 1 + \frac{F_{\alpha}}{F} \right].$$
 (3.5.2)

где  $k = 1,38 \cdot 10^{-23}$  Дж/К – постоянная Больцмана; T – температура;  $P_c$  – мощность входного сигнала;  $F_{\alpha}$  – граничная частота фликкерных шумов фазы (не более  $10^4$  Гц).

Приняв мощность входных сигналов *P*<sub>ci</sub> одинаковой (далее в расчетах 5 мВт), преобразуем (3.5.1) к виду [148]

$$S_{yq_2}(F) = S_{yq_{n2}}(F) \cdot \left(1 + \frac{1}{n_{21}^2} + \frac{1}{n_{21}^2 n_{22}^2} + \dots + \frac{1}{n_{22}^2}\right).$$
(3.5.3)

Тогда выходные фазовые шумы всего формирователя сигналов с использованием образов основной частоты ЦВС с учетом умножения выходной частоты синтезатора на *n*<sub>2</sub> будут определяться как

$$S_{\Phi}(F) = S_{\text{sbixLBC}}(F) \cdot n_2^2 + S_{YY2}(F) , \qquad (3.5.4)$$

Проведем исследование шумовых характеристик формирователя сигналов с использованием образов основной частоты ЦВС умножения выходной частоты синтезатора. Для этого, прежде всего, требуется провести частотное планирование формирователя сигналов, чтобы определить значения частот и коэффициентов звеньев различных блоков устройства. В качестве ЦВС использован синтезатор AD9910 с тактовой частотой  $f_T \leq 1000$ МГц, частотой ГОЧ $f_{TOY} = 24$  МГц, требуемой частотой на выходе формирователя  $f_{\phi} = 3000$  МГц и номерами используемых образов: n = -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5. Результаты частотного планирования сведены в табл. 3.5.1.

| $n_2$ | $n_1$ | N  | $f_{UBC},$ | $f_T$ , | $K_{LBC}$ | <i>fцвс_обр</i> , | $n_2$ | $n_1$ | п  | $f_{UBC},$ | $f_T$ , | $K_{LBC}$ | <i>fцвс_обр</i> , |
|-------|-------|----|------------|---------|-----------|-------------------|-------|-------|----|------------|---------|-----------|-------------------|
| _     |       |    | МΪц        | MГц     |           | MГц               |       |       |    | МГц        | MГц     |           | МГц               |
| 5     | 14    | -2 | 72         | 336     | 0,214     | 600               | 1     | 26    | -5 | 120        | 624     | 0,192     | 3000              |
| 12    | 14    | -1 | 86         | 336     | 0,256     | 250               | 6     | 26    | -1 | 124        | 624     | 0,199     | 1000              |
| 36    | 14    | 0  | 83,33      | 336     | 0,248     | 83,33             | 19    | 26    | 0  | 157,9      | 624     | 0,253     | 150               |
| 4     | 14    | 2  | 78         | 336     | 0,232     | 750               | 4     | 26    | 1  | 126        | 624     | 0,202     | 750               |
| 3     | 15    | -3 | 80         | 360     | 0,222     | 1000              | 6     | 27    | -1 | 148        | 648     | 0,228     | 500               |
| 5     | 15    | -2 | 120        | 360     | 0,333     | 600               | 19    | 27    | 0  | 157,9      | 648     | 0,244     | 157,9             |
| 33    | 15    | 0  | 90,909     | 360     | 0,253     | 90,909            | 4     | 27    | 1  | 102        | 648     | 0,157     | 750               |
| 2     | 15    | 4  | 60         | 360     | 0,167     | 1500              | 2     | 27    | 2  | 204        | 648     | 0,315     | 1500              |
| 10    | 16    | -1 | 84         | 384     | 0,219     | 300               | 6     | 28    | -1 | 172        | 672     | 0,256     | 500               |
| 31    | 16    | 0  | 96,77      | 384     | 0,252     | 96,77             | 18    | 28    | 0  | 166,7      | 672     | 0,248     | 166,7             |
| 6     | 16    | 1  | 116        | 384     | 0,302     | 500               | 2     | 28    | 2  | 156        | 672     | 0,232     | 1500              |
| 2     | 17    | -4 | 132        | 408     | 0,324     | 1500              | 6     | 29    | -1 | 196        | 696     | 0,282     | 500               |
| 4     | 17    | -2 | 66         | 408     | 0,162     | 750               | 17    | 29    | 0  | 176,5      | 696     | 0,254     | 166,7             |
| 10    | 17    | -1 | 108        | 408     | 0,265     | 300               | 2     | 29    | 2  | 108        | 696     | 0,155     | 1500              |
| 29    | 17    | 0  | 103,4      | 408     | 0,254     | 103,4             | 1     | 29    | 5  | 216        | 696     | 0,31      | 3000              |
| 6     | 17    | 1  | 92         | 408     | 0,225     | 500               | 6     | 30    | -1 | 220        | 720     | 0,306     | 500               |
| 4     | 18    | -2 | 114        | 432     | 0,264     | 750               | 17    | 30    | 0  | 176,5      | 720     | 0,245     | 176,5             |
| 9     | 18    | -1 | 98,67      | 432     | 0,228     | 333,33            | 1     | 30    | 4  | 120        | 720     | 0,167     | 3000              |
| 28    | 18    | 0  | 107,14     | 432     | 0,248     | 107,14            | 5     | 31    | -1 | 144        | 744     | 0,194     | 600               |
| 6     | 18    | 1  | 68         | 432     | 0,157     | 500               | 16    | 31    | 0  | 187,5      | 744     | 0,252     | 187,5             |
| 3     | 18    | 2  | 136        | 432     | 0,315     | 1000              | 3     | 31    | 1  | 256        | 744     | 0,344     | 1000              |
| 9     | 19    | -1 | 122,67     | 456     | 0,269     | 333,33            | 5     | 32    | -1 | 168        | 768     | 0,219     | 600               |
| 26    | 19    | 0  | 115,38     | 456     | 0,253     | 115,38            | 16    | 32    | 0  | 187,5      | 768     | 0,244     | 187,5             |
| 5     | 19    | 1  | 144        | 456     | 0,316     | 600               | 3     | 32    | 1  | 232        | 768     | 0,302     | 1000              |
| 3     | 19    | 2  | 88         | 456     | 0,193     | 1000              | 1     | 33    | -4 | 168        | 792     | 0,219     | 3000              |
| 2     | 19    | 3  | 132        | 456     | 0,289     | 1500              | 5     | 33    | -1 | 192        | 792     | 0,219     | 600               |
| 8     | 20    | -1 | 105        | 480     | 0,219     | 375               | 16    | 33    | 0  | 200        | 792     | 0,244     | 200               |
| 25    | 20    | 0  | 120        | 480     | 0,25      | 120               | 3     | 33    | 1  | 208        | 792     | 0,302     | 1000              |
| 5     | 20    | 1  | 120        | 480     | 0,25      | 600               | 1     | 34    | -4 | 264        | 816     | 0,324     | 3000              |
| 8     | 21    | -1 | 129        | 504     | 0,256     | 375               | 2     | 34    | -2 | 132        | 816     | 0,162     | 1500              |
| 24    | 21    | 0  | 125        | 504     | 0,248     | 125               | 5     | 34    | -1 | 216        | 816     | 0,265     | 600               |
| 5     | 21    | 1  | 96         | 504     | 0,19      | 600               | 15    | 34    | 0  | 200        | 816     | 0,245     | 200               |
| 2     | 22    | -3 | 84         | 528     | 0,159     | 1500              | 3     | 34    | 1  | 184        | 816     | 0,225     | 1000              |
| 8     | 22    | -1 | 153        | 528     | 0,29      | 375               | 2     | 35    | -2 | 180        | 840     | 0,214     | 1500              |
| 23    | 22    | 0  | 130,4      | 528     | 0,247     | 130,4             | 5     | 35    | -1 | 240        | 840     | 0,286     | 600               |
| 2     | 23    | -3 | 156        | 552     | 0,283     | 1500              | 14    | 35    | 0  | 214,3      | 840     | 0,255     | 200               |

Таблица 3.5.1 – Результаты частотного планирования формирователя сигналов

| $n_2$ | $n_1$ | N  | $f_{\mathcal{U}BC},$ | $f_T$ , | КЦВС  | <i>fцвс_обр</i> , | $n_2$ | $n_1$ | n  | $f_{UBC}$ , | $f_T$ , | КЦВС  | <i>fцвс_обр</i> , |
|-------|-------|----|----------------------|---------|-------|-------------------|-------|-------|----|-------------|---------|-------|-------------------|
|       |       |    | ΜГц                  | ΜГц     |       | ΜГц               |       |       |    | ΜГц         | ΜГц     |       | ΜГц               |
| 3     | 23    | -2 | 104                  | 552     | 0,188 | 1000              | 3     | 35    | 1  | 160         | 840     | 0,19  | 1000              |
| 22    | 23    | 0  | 136,36               | 552     | 0,247 | 136,36            | 2     | 36    | -2 | 228         | 864     | 0,264 | 1500              |
| 3     | 24    | -2 | 152                  | 576     | 0,264 | 1000              | 5     | 36    | -1 | 264         | 864     | 0,306 | 600               |
| 21    | 24    | 0  | 142,86               | 576     | 0,248 | 142,86            | 14    | 36    | 0  | 214,3       | 864     | 0,248 | 214,3             |
| 4     | 24    | 1  | 174                  | 576     | 0,302 | 750               | 3     | 36    | 1  | 136         | 864     | 0,157 | 1000              |
| 1     | 24    | 5  | 120                  | 576     | 0,208 | 3000              | 2     | 37    | -2 | 276         | 888     | 0,311 | 1500              |
| 3     | 25    | -2 | 200                  | 600     | 0,333 | 1000              | 5     | 37    | -1 | 288         | 888     | 0,324 | 600               |
| 20    | 25    | 0  | 150                  | 600     | 0,25  | 150               | 14    | 37    | 0  | 214,3       | 888     | 0,241 | 214,3             |
| 4     | 25    | 1  | 150                  | 600     | 0,25  | 750               |       |       |    |             |         |       |                   |
| 4     | 38    | -1 | 162                  | 912     | 0,178 | 750               | 4     | 40    | -1 | 210         | 960     | 0,219 | 750               |
| 24    | 38    | 0  | 230                  | 912     | 0,253 | 0                 | 13    | 40    | 0  | 230,8       | 960     | 0,24  | 230,8             |
| 1     | 38    | 3  | 264                  | 912     | 0,289 | 3000              |       |       |    |             |         |       |                   |
| 4     | 39    | -1 | 186                  | 936     | 0,199 | 750               | 4     | 41    | -1 | 234         | 984     | 0,238 | 750               |
| 24    | 39    | 0  | 230,8                | 936     | 0,247 | 230,8             | 12    | 41    | 0  | 250         | 984     | 0,254 | 250               |
| 1     | 39    | 3  | 192                  | 936     | 0,205 | 3000              |       |       |    |             |         |       |                   |

Продолжение таблицы 3.5.1

Однако при частотном планировании реального формирователя сигналов требуется учитывать, что значения коэффициентов умножения  $n_2$  выходного умножителя частоты ЦВС должны быть кратны 2, 3 и 5. В остальных случаях в качестве выходного умножителя с коэффициентом  $n_2$  необходимо использовать умножитель на системе ФАПЧ, аналогичный умножителю тактовой частоты, встроенному в интегральный ЦВС на основе системы ФАПЧ. Диапазон значений коэффициента умножения  $n_1$  тактового умножителя определяется диапазоном частот генератора, управляемого напряжением, и частотой ГОЧ.

Воспользовавшись рассчитанными значениями параметров устройства из табл. 3.5.1, проведено математическое моделирование СПМ фазовых шумов формирователя сигналов, как при использовании образов, так и при использовании основной частоты ЦВС на основе выражений (3.2.2), (3.4.1), 3.5.4). Результаты математического моделирования представлены на рис. 3.5.2- 3.5.3. Поскольку, исходя из заданных параметров формирователя, требовалось получить одинаковую выходную частоту устройства, то получившийся при моделировании коэффициент передачи ЦВС  $K_{ЦBC}$  оказался различным при одном и том же значении тактовой частоты для различных частот образов.

Следует отметить, что СПМ фазовых шумов формирователя сигналов при использовании различных образов основной частоты ЦВС и СПМ фазовых шумов

формирователя на основной частоте ЦВС совпадают. Это наглядно видно из рис. 3.5.2, 3.5.3. Однако, с практической точки зрения, использование образов позволяет уменьшить коэффициент умножения *n*<sub>2</sub> выходного умножителя частоты, т.е. сократить число транзисторных каскадов выходного умножителя формирователя.



Рисунок 3.5.2- Сравнение СПМ фазовых шумов формирователя сигналов при использовании образов основной частоты ЦВС для  $f_{\phi} = 3000$  МГц: а) при  $n_1 = 15$ ,



Рисунок 3.5.3 - Сравнение СПМ фазовых шумов формирователя сигналов при использовании различных образов основной частоты ЦВС для  $f_{\phi} = 3000$  МГц: а)

при $n_1 = 35, f_T = 840$  МГц; б) при  $n_1 = 41, f_T = 984$  МГц

Проведено моделирование СПМ фазовых шумов формирователя сигналов при отключенном умножителе тактовой частоты. В этом случае сигнал с тактовой

частотой поступает напрямую от генератора опорной частоты на тактовый вход ЦВС AD9910, минуя умножитель тактовой частоты ЦВС на основе системы ФАПЧ. Используя аналогичные значения тактовой частоты, для которых ранее проводилось моделирование СПМ фазовых шумов формирователя сигналов, получены результаты моделирования, представленные на рис. 3.5.4, 3.5.5.



Рисунок 3.5.4 - Сравнение СПМ фазовых шумов формирователя сигналов при использовании различных образов основной частоты ЦВС для  $f_{\Phi} = 3000$  МГц при отключенном тактовом умножителе при а)  $f_T = 360$  МГц; б)  $f_T = 576$  МГц



Рисунок 3.5.5 - Сравнение СПМ фазовых шумов формирователя сигналов при использовании различных образов основной частоты ЦВС для  $f_{\phi}$  = 3000 МГц при отключенном тактовом умножителе при а)  $f_T$  = 840 МГц; б)  $f_T$  = 984 МГц

Отсутствие в схеме устройства умножителя тактовой частоты закономерно привело к снижению общего уровня фазовых шумов всего формирователя сигналов, использующего образы основной частоты ЦВС. Также проявилась ожидаемая зависимость СПМ фазовых шумов от тактовой частоты ЦВС, рост которой приводит к улучшению шумовых характеристик устройства.

Однако, СПМ фазовых шумов формирователя, как в случае использования основной частоты ЦВС, так и в случае использования ее образов, также как и в предыдущем случае совпадают. Имеются лишь незначительные отклонения СПМ фазовых шумов при использовании образов основной частоты ЦВС по сравнению с СПМ фазовых шумов на основной частоте синтезатора.

Таким образом, использование образов основной частоты ЦВС в формирователях когерентных сигналов в чистом виде (без применения каких-либо методов изменения уровня образов в спектре выходного сигнала ЦВС) на практике приводит к сокращению числа транзисторных каскадов выходных умножителей частоты. В наибольшей степени это касается формирователей, в которых требуется получить достаточно высокую выходную частоту, превышающую тактовую частоту ЦВС в 5-10 и более раз.

#### 3.6 Влияние передискретизации выходного сигнала цифрового вычислительного синтезатора на спектральную плотность мощности фазовых шумов формирователей сигналов

Общий принцип передискретизации выходного сигнала ЦВС, и практическая схема передискретизатора, состоящая из преобразователя скважности и аналогового ключа, приведена в гл. 2, где показано схемотехническое моделирование работы данного устройства, выполненное средствами программы для моделирования Micro-cap.

Добавим в структурную схему формирователя сигналов, представленную на рис. 3.5.1, структурные блоки передискретизатора: преобразователь скважности (ПС) и аналоговый коммутатор (АК), и разработаем математическую модель шу-
мовых характеристик полученного устройства. На рис. 3.6.1 показана результирующая структурная схема формирователя сигналов с использованием передискретизации образов основной частоты ЦВС.



Рисунок 3.6.1 – Структурная схема формирователя сигналов с применением передискретизации выходного сигнала ЦВС

Математическая модель СПМ фазовых шумов, вносимых передискретиза-

$$S_{AK}(F) = \frac{10^{-14.5}}{F} + 10^{-17}, \qquad (3.6.1)$$

Данное выражение характерно не только для собственных шумовых характеристик передискретизатора, но и для других устройств, выполненных на основе цифровых микросхем [24].

В статье [149] получены основные выражения, описывающие теорию работы передискретизатора выходного сигнала ЦВС. Коэффициент передачи аналогового коммутатора, который представляет собой отношение комплексной огибающей выходного сигнала к комплексной огибающей входного сигнала коммутатора имеет вид

$$K_{AK}(\omega,q) = 20 \lg \left( \frac{\dot{S}_{K0}(\omega)}{\dot{S}_{d0}(\omega)} \right) = 20 \lg \left( \frac{|\sin(\omega T/2q)|}{|\sin(\omega T/2)|} \right), \quad (3.6.2)$$

где *T* – период дискретизации, *q* – скважность импульсов передискретизатора.

Получим аналогичное соотношение для номеров образов основной частоты ЦВС. Для этого перейдем к циклической частоте

$$K_{AK}(f,q) = 20 \lg \left( \frac{\left| \sin(\pi f / f_T q) \right|}{\left| \sin(\pi f / f_T) \right|} \right), \qquad (3.6.3)$$

Поскольку  $f = f_T | n + K_{UBC} |$ , тогда  $f / f_T = | n + K_{UBC} |$  и соответственно

$$K_{AK}(f,q) = 20 \lg \left( \frac{\left| \sin\left(\pi \frac{\left| n + K_{UBC} \right|}{q} \right) \right|}{\left| \sin\left(\pi \left| n + K_{UBC} \right| \right) \right|} \right), \qquad (3.6.4)$$

Данное соотношение характеризует коэффициент передачи аналогового коммутатора для выходного сигнала ЦВС. Коэффициент передачи по фазовым шумам является его обратной величиной. Поэтому, результирующий коэффициент передачи аналогового коммутатора для СПМ фазовых шумов определяется следующей формулой:

$$\frac{1}{K_{AK}} = \frac{\left|\sin\left(\pi \left|n + K_{IJBC}\right|\right)\right|}{\left|\sin\left(\pi \frac{\left|n + K_{IJBC}\right|}{q}\right)\right|},$$
(3.6.5)

На рис. 3.6.2-3.6.4 приведены зависимости коэффициента передачи АК от скважности для различных номеров образов основной частоты ЦВС, полученные при  $K_{\text{ЦBC}} = 0,05$ ; 0,25; 0,4.

Из графических зависимостей следует, что амплитуды гармоник образов основной частоты ЦВС значительно изменяются - уменьшается от -2,5 дБ и ниже в зависимости от используемой скважности. При этом для образов основной частоты ЦВС имеются некоторые области максимума амплитуды при определенных значениях скважности, что является главным результатом работы передискретизатора - имеется возможность увеличить отношение сигнал/шум устройства для выбранного номера образа, и, тем самым, снизить уровень фазовых шумов формирователя сигналов.



Рисунок 3.6.2 – Зависимость коэффициента передачи АК от скважности для различных номеров образов основной частоты ЦВС при *К*<sub>ЦВС</sub> = 0,05



Рисунок 3.6.3 – Зависимость коэффициента передачи АК от скважности для различных номеров образов основной частоты ЦВС при *К*<sub>ЦВС</sub> = 0,25



Рисунок 3.6.4 – Зависимость коэффициента передачи АК от скважности для различных номеров образов основной частоты ЦВС при *К*<sub>ШВС</sub> = 0,4

Следует также отметить, что при минимальном  $K_{\text{ЦВС}}$ , равном 0,05, наблюдается максимальное увеличение амплитуды при передискретизации – 8 дБ, и наоборот, увеличение  $K_{\text{ЦВС}}$  до уровня 0,4 приводит к уменьшению степени изменения амплитуды гармоник образов практически до 0 дБ.

Таким образом, выходные фазовые шумы АК можно записать как

$$S_{\rm GELXAK}(F) = S_{\rm GELXAK}(F) \cdot \frac{1}{K_{\rm AK}^2} + S_{\rm AK}(F) , \qquad (3.6.6)$$

а выходные фазовые шумы всего формирователя сигналов с использованием передискретизации и образов основной частоты ЦВСи учетом умножения частоты на  $n_2$ 

$$S_{\phi_{-AK}}(F) = S_{_{BbixAK}}(F) \cdot n_2^2 + S_{_{YY2}}(F) , \qquad (3.6.7)$$

Результаты математического моделирования СПМ фазовых шумов формирователя сигналов с передискретизацией и использованием образов основной частоты ЦВС приведены на рис. 3.6.5-3.6.6 для выходной частоты устройства  $f_{\phi}$  = 3000 МГц при отключенном умножителе тактовой частоты на основе системы ФАПЧ.



Рисунок 3.6.5 - Сравнение СПМ фазовых шумов формирователя сигналов с использованием образов основной частоты ЦВС при наличии и отсутствии передис-

кретизации выходного сигнала синтезатора при  $f_T = 360$  МГц:



a) 
$$n = -2$$
,  $q = 3,35$ ; 6)  $n = 4$ ,  $q = 2,8$ 

Рисунок 3.6.6 - Сравнение СПМ фазовых шумов формирователя сигналов с использованием образов основной частоты ЦВС при наличии и отсутствии передискретизации выходного сигнала синтезаторапри *f*<sub>T</sub> = 840 МГц: a) *n* = 1, *q* = 2,4; б) *n* = -2, *q* = 3,55.

Из рис. 3.6.3-3.6.4 видно, что использование передискретизации позволяет значительно снизить уровень фазовых шумов формирователя сигналов. Однако,

для максимально возможного улучшения шумовых характеристик требуется оптимизация выбора среди вариантов частотного планирования, значения скважности передискретизирующих импульсов. Наилучшим из представленных вариантов с точки зрения уровня фазовых шумов является случай, изображенный на рис. 3.6.4a, где передискретизация позволяет снизить уровень фазовых шумов формирователя сигналов на 5-6 дБ в во всей полосе отстроек от несущей частоты.

#### 3.7 Выводы

1. Исследована математическая модель спектральной плотности мощности фазовых шумов цифрового вычислительного синтезатора на основной частоте выходного сигнала при наличии и отсутствии встроенного умножителя тактовой частоты на основе системы фазовой автоподстройки частоты.

2. Разработана и исследована математическая модель спектральной плотности мощности фазовых шумов цифрового вычислительного синтезатора, использующего образы основной частоты, проведено ее экспериментальное подтверждение, показавшее высокую степень точности описания шумовых характеристик.

3. Исследовано влияние умножителя тактовой частоты на уровень фазовых шумов формирователя сигналов, показавшее необходимость использования максимально возможной тактовой частоты цифрового вычислительного синтезатора для минимизации уровня фазовых шумов. Установлено, что при использовании образов основной частоты цифрового вычислительного синтезатора, нормированные к одинаковой частоте шумовые характеристики обладают одинаковым уровнем фазовых шумов.

4. Использование образов основной частоты цифрового вычислительного синтезатора в формирователях когерентных сигналов приводит к сокращению числа транзисторных каскадов выходных умножителей частоты.

5. Использование передискретизатора выходного сигнала цифрового вычислительного синтезатора позволяет увеличить отношение сигнал/шум для гармоник выбранных образов, и, тем самым, получить преимущество от их использования по шумовым характеристикам на 5-6 дБ. Установлено, что наибольшее увеличение амплитуды образов при использовании передискретизации происходит при минимальных значениях коэффициента передачи цифрового вычислительного синтезатора.

# ГЛАВА 4. ПРОЕКТИРОВАНИЕ ФОРМИРОВАТЕЛЕЙ СИГНАЛОВ РАДИОСИСТЕМ С ИСПОЛЬЗОВАНИЕМ ОБРАЗОВ ОСНОВНОЙ ЧАСТОТЫ ЦИФРОВЫХ ВЫЧИСЛИТЕЛЬНЫХ СИНТЕЗАТОРОВ

# 4.1 Определение параметров формирователей сигналов радиосистемы, использующей образы основной частоты цифровых вычислительных синтезаторов

Рассмотрим особенности проектирования и моделирования многоканального формирователя когерентных сигналов радиосистемы, использующей образы основной частоты ЦВС, с заданными техническими параметрами (табл. 4.1.1) от одного высокостабильного генератора опорной частоты [150-157].

Таблица 4.1.1. - Исходные данные для проектирования радиосистемы

| Порядковый номер<br>формирователя сигналов | Диапазон частот<br>выходного<br>сигнала, МГц | Средняя частота<br>выходного<br>сигнала, <i>f</i> <sub>Ф</sub> МГц | Частота ГОЧ, МГц |  |  |
|--------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|------------------|--|--|
| Формирователь №1                           | 815935                                       | 875                                                                | 24               |  |  |
| Формирователь №2                           | 16101730                                     | 1670                                                               | 24               |  |  |
| Формирователь №3                           | 13501470                                     | 1410                                                               | 24               |  |  |
| Формирователь №4                           | 20252205                                     | 2115                                                               | 24               |  |  |

На основе данных табл. 4.1.1 можно изобразить обобщенную структурную формирования разрабатываемой схему тракта сигналов радиосистемы, показанную на рис. 4.1.1. Каждый канал формирования сигналов радиосистемы состоит из собственного умножителя тактовой частоты (УЧ1 1 - УЧ1 4), с коэффициентом умножения n<sub>1</sub>; ЦВС (ЦВС1 - ЦВС4); фильтра (ПФ или ФНЧ в зависимости от номера используемого образа основной частоты *n*) и выходного умножителя частоты (УЧ2 1 - УЧ2 4) с коэффициентом умножения n<sub>2</sub>. Кроме формирования быть добавлен того, В каждый ИЗ каналов может передискретизатор выходного сигнала ЦВС, размещаемый непосредственно перед ПФ соответствующего канала. Данный передискретизатор может применяться только при использовании образов основной частоты ЦВС, то есть в тех случаях, когда  $n \neq 0$ .



Рисунок 4.1.1 – Обобщенная структурная схема тракта формирования сигналов радиосистемы

Проектирование и исследование данного тракта будет проведено для средних значений из диапазона выходных частот каждого канала формирования. В качестве ЦВС будет использован интегральный синтезатор AD9910.

Результаты частотного планирования исследуемого тракта формирования сигналов радиосистемы для каждого из четырех каналов, полученные с использованием разработанного во 2 гл. специализированного программного комплекса, показаны в табл. 4.1.2 - 4.1.5.

| $n_{2_1}$ | $n_{1_1}$ | N  | <i>fцвci</i> , | $f_{TI}$ , | Kцbci | f <sub>обр</sub> і, | $n_{2_1}$ | $n_{1_1}$ | Ν  | <i>fцвci</i> , | $f_{TI}$ , | Kцbci | f <sub>oópl</sub> , |
|-----------|-----------|----|----------------|------------|-------|---------------------|-----------|-----------|----|----------------|------------|-------|---------------------|
|           |           |    | MIц            | MIц        |       | MIц                 |           |           |    | MIц            | MIц        |       | MIц                 |
| 10        | 14        | 0  | 87,5           | 336        | 0,26  | 87,5                | 6         | 25        | 0  | 145,8          | 600        | 0,243 | 145,8               |
| 2         | 14        | 1  | 101,5          | 336        | 0,302 | 437,5               | 2         | 26        | -1 | 186,5          | 624        | 0,299 | 437,5               |
| 3         | 15        | -1 | 68,33          | 360        | 0,19  | 291,7               | 6         | 26        | 0  | 145,8          | 624        | 0,234 | 145,8               |
| 10        | 15        | 0  | 87,5           | 360        | 0,243 | 87,5                | 2         | 27        | -1 | 210,5          | 648        | 0,325 | 437,5               |
| 2         | 15        | 1  | 77,5           | 360        | 0,215 | 437,5               | 5         | 27        | 0  | 175            | 648        | 0,27  | 175                 |
| 3         | 16        | -1 | 92,33          | 384        | 0,24  | 291,7               | 2         | 28        | -1 | 234,5          | 672        | 0,349 | 437,5               |
| 9         | 16        | 0  | 97,22          | 384        | 0,253 | 97,22               | 5         | 28        | 0  | 175            | 672        | 0,26  | 175                 |
| 1         | 16        | 2  | 107            | 384        | 0,279 | 875                 | 1         | 28        | 1  | 203            | 672        | 0,302 | 875                 |
| 3         | 17        | -1 | 116,3          | 408        | 0,285 | 291,7               | 5         | 29        | 0  | 175            | 696        | 0,251 | 175                 |
| 9         | 17        | 0  | 97,22          | 408        | 0,238 | 97,22               | 1         | 29        | 1  | 179            | 696        | 0,257 | 875                 |
| 3         | 18        | -1 | 140,3          | 432        | 0,325 | 291,7               | 5         | 30        | 0  | 175            | 720        | 0,243 | 175                 |
| 8         | 18        | 0  | 109,4          | 432        | 0,253 | 109,4               | 1         | 30        | 1  | 155            | 720        | 0,215 | 875                 |
| 8         | 19        | 0  | 109,4          | 456        | 0,24  | 109,4               | 5         | 31        | 0  | 175            | 744        | 0,235 | 175                 |
| 1         | 20        | -2 | 85             | 480        | 0,177 | 875                 | 1         | 31        | 1  | 131            | 744        | 0,176 | 875                 |
| 7         | 20        | 0  | 125            | 480        | 0,26  | 125                 | 5         | 32        | 0  | 175            | 768        | 0,228 | 175                 |
| 1         | 21        | -2 | 133            | 504        | 0,264 | 875                 | 4         | 33        | 0  | 218,8          | 792        | 0,276 | 218,8               |
| 7         | 21        | 0  | 125            | 504        | 0,248 | 125                 | 4         | 34        | 0  | 218,8          | 816        | 0,268 | 218,8               |
| 1         | 22        | -2 | 181            | 528        | 0,343 | 875                 | 4         | 35        | 0  | 218,8          | 840        | 0,26  | 218,8               |
| 2         | 22        | -1 | 90,5           | 528        | 0,171 | 437,5               | 4         | 36        | 0  | 218,8          | 864        | 0,253 | 218,8               |
| 7         | 22        | 0  | 125            | 528        | 0,237 | 125                 | 4         | 37        | 0  | 218,8          | 888        | 0,246 | 218,8               |
| 2         | 23        | -1 | 114,5          | 552        | 0,207 | 437,5               | 4         | 38        | 0  | 218,8          | 912        | 0,24  | 218,8               |
| 6         | 23        | 0  | 145,8          | 552        | 0,264 | 145,8               | 4         | 39        | 0  | 218,8          | 936        | 0,234 | 218,8               |
| 2         | 24        | -1 | 138,5          | 576        | 0,24  | 437,5               | 4         | 40        | 0  | 218,8          | 960        | 0,228 | 218,8               |
| 6         | 24        | 0  | 145,8          | 576        | 0,253 | 145,8               | 4         | 41        | 0  | 218,8          | 984        | 0,222 | 218,8               |
| 2         | 25        | -1 | 162,5          | 600        | 0,271 | 437,5               |           |           |    |                |            |       |                     |

Таблица 4.1.2 - Результаты частотного планирования первого канала

формирования сигналов ( $f_{\phi l} = 875 \text{ M}\Gamma$ ц)

Из табл. 4.1.2 - 4.1.5 видно, что наибольшее число вариантов частотного планирования соответствует формирователю сигналов с большей выходной частотой, а именно 2115 МГц.

Согласно обобщенной структурной схеме исследуемого тракта радиосистемы (рис. 4.1.1) рассмотрим и сравним два варианта построения каналов формирования сигналов: с использованием образов основной частоты ЦВС и передискретизацией выходного сигнала или с использованием основной частоты ЦВС и применением ее последующего умножения транзисторными каскадами с общим коэффициентом умножения  $n_2 = 12$ .

формирования сигналов ( $f_{\phi_2} = 1670 \text{ M}\Gamma$ ц)

| <i>n</i> <sub>2_2</sub> | <i>n</i> <sub>1_2</sub> | Ν  | <i>f<sub>цвс2</sub>,</i><br>МГц | <i>f</i> <sub>T2</sub> ,<br>МГц | Кцвс2 | <i>f<sub>обр2</sub>,</i><br>МГц | <i>n</i> <sub>2_2</sub> | <i>n</i> <sub>1_2</sub> | N  | <i>f<sub>цвс2</sub>,</i><br>МГц | <i>f</i> <sub>72</sub> ,<br>МГц | Кцвс2 | <i>f<sub>обр2</sub>,</i><br>МГц |
|-------------------------|-------------------------|----|---------------------------------|---------------------------------|-------|---------------------------------|-------------------------|-------------------------|----|---------------------------------|---------------------------------|-------|---------------------------------|
| 3                       | 14                      | -2 | 115,3                           | 336                             | 0,343 | 556,7                           | 1                       | 26                      | -3 | 202                             | 624                             | 0,324 | 1670                            |
| 20                      | 14                      | 0  | 83,5                            | 336                             | 0,249 | 83,5                            | 4                       | 26                      | -1 | 206,5                           | 624                             | 0,331 | 417,5                           |
| 4                       | 14                      | 1  | 81,5                            | 336                             | 0,243 | 417,5                           | 11                      | 26                      | 0  | 151,8                           | 624                             | 0,243 | 151,8                           |
| 6                       | 15                      | -1 | 81,67                           | 360                             | 0,227 | 278,3                           | 2                       | 26                      | 1  | 211                             | 624                             | 0,338 | 835                             |
| 19                      | 15                      | 0  | 87,89                           | 360                             | 0,244 | 87,89                           | 10                      | 27                      | 0  | 167                             | 648                             | 0,258 | 167                             |
| 4                       | 15                      | 1  | 57,5                            | 360                             | 0,16  | 417,5                           | 2                       | 27                      | 1  | 187                             | 648                             | 0,289 | 835                             |
| 2                       | 15                      | 2  | 115                             | 360                             | 0,319 | 835                             | 3                       | 28                      | -1 | 115,3                           | 672                             | 0,172 | 556,7                           |
| 6                       | 16                      | -1 | 105,7                           | 384                             | 0,275 | 278,3                           | 10                      | 28                      | 0  | 167                             | 672                             | 0,249 | 167                             |
| 17                      | 16                      | 0  | 98,24                           | 384                             | 0,256 | 98,24                           | 2                       | 28                      | 1  | 163                             | 672                             | 0,243 | 835                             |
| 2                       | 16                      | 2  | 67                              | 384                             | 0,174 | 835                             | 3                       | 29                      | -1 | 139,3                           | 696                             | 0,2   | 556,7                           |
| 1                       | 16                      | 4  | 116                             | 384                             | 0,349 | 1670                            | 10                      | 29                      | 0  | 167                             | 696                             | 0,24  | 166,7                           |
| 5                       | 17                      | -1 | 74                              | 408                             | 0,181 | 334                             | 2                       | 29                      | 1  | 139                             | 696                             | 0,2   | 835                             |
| 16                      | 17                      | 0  | 104,4                           | 408                             | 0,256 | 104,4                           | 3                       | 30                      | -1 | 163,3                           | 720                             | 0,227 | 556,8                           |
| 5                       | 18                      | -1 | 98                              | 432                             | 0,227 | 334                             | 9                       | 30                      | 0  | 185,6                           | 720                             | 0,258 | 185,6                           |
| 15                      | 18                      | 0  | 111,3                           | 432                             | 0,258 | 111,3                           | 2                       | 30                      | 1  | 115                             | 720                             | 0,16  | 835                             |
| 3                       | 18                      | 1  | 124,7                           | 432                             | 0,289 | 556,7                           | 1                       | 30                      | 2  | 1230                            | 720                             | 0,319 | 1670                            |
| 1                       | 19                      | -4 | 154                             | 456                             | 0,338 | 1670                            | 3                       | 31                      | -1 | 187,3                           | 744                             | 0,252 | 556,7                           |
| 2                       | 19                      | -2 | 77                              | 456                             | 0,169 | 835                             | 9                       | 31                      | 0  | 185,6                           | 744                             | 0,249 | 185,6                           |
| 5                       | 19                      | -1 | 122                             | 456                             | 0,268 | 334                             | 1                       | 31                      | 2  | 182                             | 744                             | 0,245 | 1670                            |
| 15                      | 19                      | 0  | 111,3                           | 456                             | 0,244 | 111,3                           | 3                       | 32                      | -1 | 211,3                           | 768                             | 0,275 | 556,7                           |
| 3                       | 19                      | 1  | 100,7                           | 456                             | 0,221 | 556,7                           | 9                       | 32                      | 0  | 185,6                           | 768                             | 0,242 | 185,6                           |
| 2                       | 20                      | -2 | 125                             | 480                             | 0,26  | 835                             | 2                       | 32                      | 2  | 134                             | 768                             | 0,174 | 1670                            |
| 5                       | 20                      | -1 | 146                             | 480                             | 0,304 | 334                             | 3                       | 33                      | -1 | 235,3                           | 792                             | 0,297 | 556,7                           |
| 14                      | 20                      | 0  | 119,3                           | 480                             | 0,249 | 119,3                           | 8                       | 33                      | 0  | 208,7                           | 792                             | 0,264 | 208,7                           |
| 2                       | 20                      | 1  | 76,67                           | 480                             | 0,16  | 556,7                           | 3                       | 34                      | -1 | 259,3                           | 816                             | 0,318 | 556,7                           |
| 2                       | 21                      | -2 | 173                             | 504                             | 0,343 | 835                             | 8                       | 34                      | 0  | 208,7                           | 816                             | 0,264 | 208,7                           |
| 4                       | 21                      | -1 | 86,5                            | 504                             | 0,172 | 417,5                           | 3                       | 35                      | -1 | 283,3                           | 840                             | 0,337 | 556,7                           |
| 13                      | 21                      | 0  | 128,5                           | 504                             | 0,255 | 128,5                           | 8                       | 35                      | 0  | 208,7                           | 840                             | 0,249 | 208,7                           |
| 3                       | 21                      | 3  | 158                             | 504                             | 0,313 | 1670                            | 8                       | 36                      | 0  | 208,7                           | 864                             | 0,242 | 208,7                           |
| 4                       | 22                      | -1 | 110,5                           | 528                             | 0,209 | 417,5                           | 8                       | 36                      | 0  | 208,7                           | 888                             | 0,235 | 208,7                           |
| 13                      | 22                      | 0  | 128,5                           | 528                             | 0,243 | 128,5                           | 1                       | 38                      | -2 | 154                             | 912                             | 0,178 | 750                             |
| 3                       | 22                      | 1  | 86                              | 528                             | 0,163 | 1670                            | 7                       | 38                      | 0  | 238,6                           | 912                             | 0,262 | 238,6                           |
| 4                       | 23                      | -1 | 134,5                           | 552                             | 0,244 | 417,5                           | 1                       | 39                      | -2 | 202                             | 936                             | 0,216 | 1670                            |
| 12                      | 23                      | 0  | 139,2                           | 552                             | 0,252 | 139,2                           | 7                       | 39                      | 0  | 238,6                           | 936                             | 0,255 | 238,6                           |
| 4                       | 24                      | -1 | 158,5                           | 576                             | 0,275 | 417,5                           | 1                       | 40                      | -2 | 250                             | 960                             | 0,26  | 1670                            |
| 12                      | 24                      | 0  | 139,2                           | 576                             | 0,242 | 139,2                           | 7                       | 40                      | 0  | 238,6                           | 960                             | 0,249 | 238,6                           |
| 1                       | 25                      | -3 | 130                             | 600                             | 0,217 | 1670                            | 1                       | 41                      | -2 | 298                             | 984                             | 0,303 | 1670                            |
| 4                       | 25                      | -1 | 182,5                           | 600                             | 0,304 | 417,5                           | 2                       | 41                      | -1 | 149                             | 984                             | 0,151 | 835                             |
| 11                      | 25                      | 0  | 150                             | 600                             | 0,253 | 151,8                           | 7                       | 41                      | 0  | 238                             | 984                             | 0,242 | 238,6                           |

|                         |    |                       |                                |       |                                 | фор                     | омир                    | овані | ия сигн               | алов (ј                         | $f_{\phi_3} = 14$ | 10 MΓι                          |
|-------------------------|----|-----------------------|--------------------------------|-------|---------------------------------|-------------------------|-------------------------|-------|-----------------------|---------------------------------|-------------------|---------------------------------|
| <i>n</i> <sub>1_3</sub> | Ν  | <i>fцвсз</i> ,<br>МГц | <i>f<sub>тз</sub></i> ,<br>МГц | КЦВСЗ | <i>f<sub>обр3</sub>,</i><br>МГц | <i>n</i> <sub>2_3</sub> | <i>n</i> <sub>1_3</sub> | Ν     | <i>fцвсз</i> ,<br>МГц | <i>f</i> <sub>73</sub> ,<br>МГц | К <sub>ЦВС3</sub> | <i>f<sub>обр3</sub>,</i><br>МГц |
| 14                      | -1 | 101                   | 336                            | 0,301 | 235                             | 3                       | 26                      | -1    | 154                   | 624                             | 0,247             | 470                             |
| 14                      | 0  | 82,94                 | 336                            | 0,247 | 82,94                           | 9                       | 26                      | 0     | 156,7                 | 624                             | 0,251             | 156,7                           |
| 14                      | 4  | 66                    | 336                            | 0,196 | 1410                            | 1                       | 26                      | 2     | 162                   | 624                             | 0,26              | 1410                            |
| 15                      | -1 | 78                    | 360                            | 0,217 | 282                             | 3                       | 27                      | -1    | 178                   | 648                             | 0,275             | 470                             |
| 15                      | 0  | 88,13                 | 360                            | 0,245 | 88,13                           | 9                       | 27                      | 0     | 156,7                 | 648                             | 0,242             | 156,7                           |
| 15                      | 1  | 110                   | 360                            | 0,306 | 470                             | 1                       | 27                      | 2     | 114                   | 648                             | 0,176             | 1410                            |
| 16                      | -4 | 126                   | 384                            | 0,328 | 1410                            | 3                       | 28                      | -1    | 202                   | 672                             | 0,301             | 470                             |
| 16                      | -2 | 63                    | 384                            | 0,164 | 705                             | 8                       | 28                      | 0     | 176,3                 | 672                             | 0,262             | 176,3                           |
| 16                      | -1 | 102                   | 384                            | 0,161 | 282                             | 3                       | 29                      | -1    | 226                   | 696                             | 0,325             | 470                             |
| 16                      | 0  | 94                    | 384                            | 0,245 | 94                              | 8                       | 29                      | 0     | 176,3                 | 696                             | 0,253             | 176,3                           |
| 16                      | 1  | 86                    | 384                            | 0,224 | 470                             | 3                       | 30                      | -1    | 250                   | 720                             | 0,347             | 470                             |
| 17                      | -2 | 111                   | 408                            | 0,272 | 705                             | 7                       | 30                      | 0     | 176,3                 | 720                             | 0,245             | 176,3                           |
| 17                      | -1 | 126                   | 408                            | 0,309 | 282                             | 8                       | 31                      | 0     | 176,3                 | 744                             | 0,237             | 176,3                           |
| 17                      | 0  | 100,7                 | 408                            | 0,247 | 100,7                           | 1                       | 32                      | -2    | 126                   | 768                             | 0,164             | 1410                            |
| 17                      | 1  | 62                    | 408                            | 0,152 | 470                             | 7                       | 32                      | 0     | 201,4                 | 768                             | 0,262             | 201,4                           |
| 18                      | -1 | 79,5                  | 432                            | 0,184 | 352,5                           | 1                       | 33                      | -2    | 174                   | 792                             | 0,174             | 1410                            |
| 18                      | 0  | 108,5                 | 432                            | 0,251 | 108,5                           | 7                       | 33                      | 0     | 201,4                 | 792                             | 0,201             | 201,4                           |
| 18                      | 3  | 114                   | 432                            | 0,264 | 1410                            | 1                       | 34                      | -2    | 222                   | 816                             | 0,272             | 1410                            |
| 19                      | -1 | 103,5                 | 456                            | 0,227 | 352,5                           | 7                       | 34                      | 0     | 201,4                 | 816                             | 0,247             | 201,4                           |
| 19                      | 0  | 117,5                 | 456                            | 0,258 | 117,5                           | 1                       | 35                      | -2    | 270                   | 840                             | 0,321             | 1410                            |
| 20                      | -1 | 127,5                 | 480                            | 0,266 | 352,5                           | 2                       | 35                      | -1    | 135                   | 840                             | 0,161             | 705                             |

Таблица 4.1.4 - Результаты частотного планирования третьего канала

*n*<sub>2\_3</sub>

17

 $\begin{array}{r}
 1 \\
 5 \\
 16 \\
 3 \\
 1 \\
 2 \\
 5 \\
 15 \\
 3 \\
 2 \\
 5 \\
 14 \\
 3 \\
 4 \\
 13 \\
 \end{array}$ 

-3

-1

-3

-1

-1

-1

117,5

151,5

128,2

175,5

128,2

143,1

0,245

0,202

0,301

0,254

0,33

0,332

0,243

0,335

0,255

0,277

0,184

0,245

0,224

0,217

0,239

0,175

117,5

352,5

128,2

352,5

128,2

143,1

-1

-1

-1

-1

-1

-1

201,4

201,4

0,24

0,184

0,233

0,206

0,265

0,227

0,258

0,247

0,251

0,266

0,245

0,284

0,239

201,4

201,4

)

Таблица 4.1.5 - Результаты частотного планирования четвертого канала

формирования сигналов ( $f_{\Phi 4} = 2115 \text{ M} \Gamma$ ц)

| <i>n</i> <sub>2_4</sub> | <i>n</i> <sub>1_4</sub> | Ν  | <i>f<sub>цвс4</sub>,</i><br>МГц | <i>f</i> <sub>T4</sub> ,<br>МГц | K <sub>ЦBC4</sub> | <i>f<sub>обр4</sub>,</i><br>МГц | <i>n</i> <sub>2_4</sub> | <i>n</i> <sub>1_4</sub> | Ν  | <i>f<sub>цвс4</sub>,</i><br>МГц | <i>f<sub>T4</sub>,</i><br>МГц | K <sub>LIBC4</sub> | <i>f<sub>обр4</sub>,</i><br>МГц |
|-------------------------|-------------------------|----|---------------------------------|---------------------------------|-------------------|---------------------------------|-------------------------|-------------------------|----|---------------------------------|-------------------------------|--------------------|---------------------------------|
| 8                       | 14                      | -1 | 71,62                           | 336                             | 0,213             | 264,4                           | 2                       | 26                      | -2 | 190,5                           | 624                           | 0,305              | 1058                            |
| 25                      | 14                      | 0  | 84,6                            | 336                             | 0,252             | 82,94                           | 5                       | 26                      | -1 | 201                             | 624                           | 0,322              | 423                             |
| 5                       | 14                      | 1  | 87                              | 336                             | 0,259             | 423                             | 14                      | 26                      | 0  | 151,1                           | 624                           | 0,242              | 1511                            |
| 8                       | 15                      | -1 | 95,63                           | 360                             | 0,266             | 264,4                           | 4                       | 27                      | -1 | 119,2                           | 648                           | 0,184              | 528,7                           |
| 24                      | 15                      | 0  | 88,13                           | 360                             | 0,245             | 88,13                           | 13                      | 27                      | 0  | 162,7                           | 648                           | 0,251              | 162,7                           |
| 5                       | 15                      | 1  | 63                              | 360                             | 0,175             | 423                             | 1                       | 27                      | 3  | 171                             | 648                           | 0,264              | 2115                            |
| 2                       | 16                      | -3 | 94,5                            | 384                             | 0,246             | 1058                            | 4                       | 28                      | -1 | 143,3                           | 672                           | 0,213              | 528,7                           |
| 3                       | 16                      | -2 | 63                              | 384                             | 0,164             | 705                             | 13                      | 28                      | 0  | 162,7                           | 672                           | 0,242              | 162,7                           |
| 7                       | 16                      | -1 | 81,86                           | 384                             | 0,213             | 302,1                           | 4                       | 29                      | -1 | 167,3                           | 696                           | 0,24               | 528,7                           |
| 22                      | 16                      | 0  | 96,14                           | 384                             | 0,25              | 96,14                           | 12                      | 29                      | 0  | 176,3                           | 696                           | 0,253              | 176,3                           |
| 3                       | 17                      | -2 | 111                             | 408                             | 0,272             | 705                             | 4                       | 30                      | -1 | 191,3                           | 720                           | 0,266              | 528,7                           |
| 7                       | 17                      | -1 | 105,9                           | 408                             | 0,259             | 302,1                           | 12                      | 30                      | 0  | 176,3                           | 720                           | 0,245              | 176,3                           |
| 21                      | 17                      | 0  | 100,7                           | 408                             | 0,247             | 100,7                           | 1                       | 31                      | -3 | 117                             | 744                           | 0,157              | 2115                            |
| 4                       | 17                      | 1  | 120,8                           | 408                             | 0,296             | 528                             | 4                       | 31                      | -1 | 215,2                           | 744                           | 0,289              | 528,7                           |
| 1                       | 17                      | 5  | 75                              | 408                             | 0,184             | 2115                            | 11                      | 31                      | 0  | 192,3                           | 744                           | 0,258              | 192,3                           |
| 7                       | 18                      | -1 | 129,9                           | 432                             | 0,301             | 302,1                           | 1                       | 32                      | -3 | 189                             | 768                           | 0,246              | 2115                            |
| 20                      | 18                      | 0  | 105,8                           | 432                             | 0,245             | 108,5                           | 4                       | 32                      | -1 | 239,3                           | 768                           | 0,312              | 528,7                           |
| 4                       | 18                      | 1  | 96,75                           | 432                             | 0,224             | 528,7                           | 11                      | 32                      | 0  | 192,3                           | 768                           | 0,25               | 192,3                           |
| 6                       | 19                      | -1 | 103,5                           | 456                             | 0,227             | 352,5                           | 1                       | 33                      | -3 | 261                             | 792                           | 0,33               | 2115                            |
| 19                      | 19                      | 0  | 111,3                           | 456                             | 0,244             | 111,3                           | 4                       | 33                      | -1 | 263,2                           | 792                           | 0,332              | 528,7                           |
| 4                       | 19                      | 1  | 72,75                           | 456                             | 0,16              | 528,7                           | 11                      | 33                      | 0  | 192,3                           | 792                           | 0,243              | 192,3                           |
| 2                       | 19                      | 2  | 145,5                           | 456                             | 0,319             | 105,8                           | 2                       | 33                      | 1  | 265,5                           | 792                           | 0,335              | 105,8                           |
| 6                       | 20                      | -1 | 127,5                           | 480                             | 0,266             | 352,5                           | 10                      | 34                      | 0  | 211,5                           | 816                           | 0,259              | 2115                            |
| 18                      | 20                      | 0  | 117,5                           | 480                             | 0,245             | 117,5                           | 2                       | 34                      | 1  | 241,5                           | 816                           | 0,296              | 1058                            |
| 2                       | 20                      | 1  | 97,5                            | 480                             | 0,203             | 1058                            | 3                       | 35                      | -1 | 135                             | 840                           | 0,161              | 705                             |
| 6                       | 21                      | -1 | 151,5                           | 504                             | 0,301             | 352,5                           | 10                      | 35                      | 0  | 211,5                           | 840                           | 0,252              | 2115                            |
| 11                      | 21                      | 0  | 124,4                           | 504                             | 0,247             | 124,4                           | 2                       | 35                      | 1  | 217,5                           | 840                           | 0,259              | 1058                            |
| 1                       | 21                      | 4  | 99                              | 504                             | 0,196             | 2115                            | 2                       | 36                      | -1 | 159                             | 864                           | 0,184              | 705                             |
| 5                       | 22                      | -1 | 105                             | 528                             | 0,199             | 423                             | 7                       | 36                      | 0  | 211,5                           | 864                           | 0,245              | 2115                            |
| 16                      | 22                      | 0  | 132,2                           | 528                             | 0,25              | 132,2                           | 2                       | 36                      | 1  | 193,5                           | 864                           | 0,224              | 1058                            |
| 3                       | 22                      | 1  | 177                             | 528                             | 0,335             | 705                             | 3                       | 37                      | -1 | 183                             | 888                           | 0,206              | 705                             |
| 1                       | 23                      | -4 | 93                              | 552                             | 0,168             | 2115                            | 10                      | 37                      | 0  | 211,5                           | 888                           | 0,238              | 211,5                           |
| 5                       | 23                      | -1 | 129                             | 552                             | 0,234             | 423                             | 2                       | 37                      | 1  | 169,5                           | 888                           | 0,191              | 1058                            |
| 15                      | 23                      | 0  | 141                             | 552                             | 0,255             | 141                             | 3                       | 38                      | -1 | 207                             | 912                           | 0,227              | 705                             |
| 3                       | 23                      | 1  | 153                             | 552                             | 0,277             | 705                             | 9                       | 38                      | 0  | 235                             | 912                           | 0,258              | 235                             |
| 1                       | 24                      | -4 | 189                             | 576                             | 0,328             | 2115                            | 2                       | 38                      | 1  | 145,5                           | 912                           | 0,16               | 1058                            |
| 2                       | 24                      | -2 | 945                             | 576                             | 0,164             | 1058                            | 1                       | 38                      | 2  | 291                             | 912                           | 0,319              | 2115                            |
| 5                       | 24                      | -1 | 153                             | 576                             | 0,266             | 423                             | 3                       | 39                      | -1 | 231                             | 936                           | 0,247              | 705                             |
| 15                      | 24                      | 0  | 141                             | 576                             | 0,245             | 141                             | 9                       | 39                      | 0  | 235                             | 936                           | 0,251              | 235                             |
| 3                       | 24                      | 2  | 129                             | 576                             | 0,224             | 705                             | 1                       | 39                      | 2  | 243                             | 936                           | 0,26               | 2115                            |
| 3                       | 25                      | -1 | 130                             | 600                             | 0,217             | 470                             | 3                       | 40                      | -1 | 255                             | 960                           | 0,266              | 705                             |
| 9                       | 25                      | 0  | 143,1                           | 600                             | 0,239             | 143,1                           | 9                       | 40                      | 0  | 235                             | 960                           | 0,245              | 235                             |
| 2                       | 25                      | 1  | 105                             | 600                             | 0,175             | 705                             | 1                       | 40                      | 2  | 195                             | 960                           | 0,203              | 2115                            |
|                         |                         |    |                                 |                                 |                   |                                 | 3                       | 41                      | -1 | 279                             | 984                           | 0,284              | 705                             |
|                         |                         |    |                                 |                                 |                   |                                 | 9                       | 41                      | 0  | 235                             | 984                           | 0,239              | 235                             |

На рис. 4.1.2 в качестве примера показаны структурные схемы обоих вариантов построения второго канала формирования сигналов с выходной

частотой 1670 МГц для вариантов частотного планирования с тактовой частотой ЦВС 600 МГц (табл. 4.1.5).



Рисунок 4.1.2 – Структурные схемы второго канала формирования сигналов: а) с использованием *n* = -3 образа основной выходной частоты ЦВС и передискретизацией и б) с использованием основной частоты ЦВС и применением ее последующего умножения транзисторными каскадами

Таблица 4.1.5 – Варианты частотного планирования второго канала формирования сигналов радиосистемы

| <i>n</i> <sub>2_2</sub> | <i>n</i> <sub>1_2</sub> | Ν  | <i>f<sub>цвс2</sub>,</i><br>МГц | <i>f</i> <sub>72</sub> ,<br>МГц | К <sub>ЦВС2</sub> | <i>f<sub>обр2</sub>,</i><br>МГц |
|-------------------------|-------------------------|----|---------------------------------|---------------------------------|-------------------|---------------------------------|
| 1                       | 25                      | -3 | 130                             | 600                             | 0,217             | 1670                            |
| 12                      | 25                      | 0  | 139,16                          | 600                             | 0,232             | 139,16                          |

Структурные схемы каналов формирования сигналов исследуемой радиосистемы для других вариантов частотного планирования строятся аналогичным образом. При этом меняются лишь параметры частотного плана и число каскадов выходного транзисторного умножителя.

# 4.2 Моделирование шумовых характеристик формирователей сигналов с использованием образов основной частоты цифровых вычислительных синтезаторов

Для получения математических моделей СПМ фазовых шумов исследуемых формирователей сигналов воспользуемся разработанными в гл. 3 математическими моделями СПМ фазовых шумов формирователей сигналов, использующих образы основной частоты ЦВС, а также выражениями собственных фазовых шумов отдельных звеньев устройств.

Для канала формирования сигналов радиосистемы, показанного на рис. 4.1.2a, модель СПМ фазовых шумов при наличии и отсутствии передискретизации выходного сигнала ЦВС имеет вид

$$S_{\Phi_a}(F) = S_{\Phi A \Pi \Psi}(F) \Big( n + K_{\mu B C} \Big)^2 + S_{\mu B C_o \delta p}(F), \qquad (4.2.1)$$

$$S_{\Phi_{AK}}(F) = S_{\Phi_{a}}(F) \cdot \frac{1}{K_{AK}^2} + S_{AK}(F), \qquad (4.2.2)$$

где  $\frac{1}{K_{AK}^2}$  - величина, обратная квадрату коэффициента передачи СПМ

фазовых шумов аналогового коммутатора.

В данной модели СПМ фазовых шумов учитывается, что в качестве умножителя тактовой частоты ЦВС используется умножитель частоты на основе системы ФАПЧ.

Для канала формирования сигналов радиосистемы, показанного на рис.4.1.26, математическая модель СПМ фазовых шумов имеет следующий вид

$$S_{\phi_{-\delta}}(F) = \left(S_{\phi_{A\Pi^{q}}}(F)K_{\mu_{BC}}^{2} + S_{\mu_{BC}}(F)\right) \cdot n_{21}^{2} + S_{yq_{2}}(F), \qquad (4.2.3)$$

где  $S_{yy_2}(F)$  определяется согласно выражению (3.5.3) для СПМ фазовых шумов выходного многокаскадного умножителя частоты формирователя сигналов.

Результаты математического моделирования СПМ фазовых шумов рассматриваемых вариантов построения формирователей сигналов при наличии и отсутствии умножителя тактовой частоты ЦВС на основе системы ФАПЧ по выражениям (4.2.1) - (4.2.3) для вариантов частотного планирования, используемых в экспериментальных измерениях (табл. 4.1.5.), показаны на рис. 4.2.1



Рисунок 4.2.1 - СПМ фазовых шумов второго канала формирования сигналов радиосистемы при  $f_T = 600$  МГц и n = -3, q = 1,85 при наличии а) и отсутствии б) умножителя тактовой частоты ЦВС на основе системы ФАПЧ с коэффициентом

#### умножения $n_1 = 25$

Результаты математического моделирования СПМ фазовых шумов исследуемых вариантов построения каналов формирования сигналов по выражениям (4.2.1) - (4.2.3) для других вариантов частотного планирования показаны на рис.4.2.2 – 4.2.4.



Рисунок 4.2.2 - СПМ фазовых шумов второго канала формирования сигналов радиосистемы при  $f_T = 456$  МГц и , n = -2, q = 3,65 при наличии а) и отсутствии б)





Рисунок 4.2.3 - СПМ фазовых шумов второго канала формирования сигналов при  $f_T = 720$  МГц и , n = 2, q = 1,55 при наличии а) и отсутствии б) умножителя тактовой частоты ЦВС на основе системы ФАПЧ



Рисунок 4.2.4 - СПМ фазовых шумов второго канала формирования сигналов при  $f_T = 960$  МГц и n = -2, q = 3,5 при наличии а) и отсутствии б) умножителя тактовой частоты ЦВС на основе системы ФАПЧ

Результаты математического моделирования СПМ фазовых шумов первого канала формирования сигналов по выражениям (4.2.1) и (4.2.2) для выходной частоты 875 МГц при выбранных вариантах частотного планирования (табл. 4.1.3) показаны на рис. 4.2.5 - 4.2.6.



Рисунок 4.2.5 - СПМ фазовых шумов первого канала формирования сигналов при  $f_T = 528$  МГц и n = -2, q = 3,3 при наличии а) и отсутствии б) умножителя тактовой частоты ЦВС на основе системы ФАПЧ



Рисунок 4.2.6 - СПМ фазовых шумов первого канала формирования сигналов при *f<sub>T</sub>* = 744 МГц и *n* = 1, *q* = 2,35 при наличии а) и отсутствии б) умножителя тактовой частоты ЦВС на основе системы ФАПЧ

Результаты математического моделирования СПМ фазовых шумов третьего и четвертого каналов формирования сигналов по выражениям (4.2.1) и (4.2.2) для выходной частоты устройства 1410 МГц и выбранных вариантов частотного планирования (табл. 4.1.4) показаны на рис. 4.2.7 - 4.2.9.



Рисунок 4.2.7 - СПМ фазовых шумов третьего канала формирования сигналов при  $f_T = 336$  МГц и n = 4, q = 2,8 при наличии а) и отсутствии б) умножителя тактовой частоты ЦВС на основе системы ФАПЧ



Рисунок 4.2.8 - СПМ фазовых шумов третьего канала формирования сигналов при  $f_T = 528$  МГц и n = -3, q = 1,8 при наличии а) и отсутствии б) умножителя тактовой частоты ЦВС на основе системы ФАПЧ



Рисунок 4.2.9 - СПМ фазовых шумов третьего канала формирования сигналов при *f<sub>T</sub>* = 768 МГц и *n* = -2, *q* = 3,65 при наличии а) и отсутствии б) умножителя тактовой частоты ЦВС на основе системы ФАПЧ

По полученным графическим зависимостям можно сделать вывод о том, что для высоких значений выходных частот каналов формирования сигналов (рис. 4.2.1 и 4.2.2) совместное использование образов основной частоты ЦВС и передискретизации выходного сигнала синтезатора позволяет снизить уровень

фазовых шумов устройства на 5-6 дБ. Подбирая значение скважности импульсов передискретизации в соответствии с рис. 3.6.2-3.6.3 в гл. 3, можно добиться большего снижения уровня фазовых шумов формирователя когерентных сигналов (порядка 8-10 дБ). Кроме того, из рис. 4.2.1 - 4.2.6 видно, что применение передискретизации наиболее эффективно для высоких номеров образов: n = -2, 2, -3, 3. При n = -1 передискретизация чаще всего дает отрицательный эффект - уменьшает амплитуду гармоники данных образов вне зависимости от установленной скважности.

# 4.3 Экспериментальное исследование формирователя радиосигналов с использованием образов основной частоты цифровых вычислительных синтезаторов

Рассмотренные варианты построения каналов формирования сигналов радиосистемы были реализованы в испытательном стенде с целью проведения экспериментальных измерений их СПМ фазовых шумов. Внешний вид испытательного стенда показан на рис. 4.1.3.



Рисунок 4.3.1 - Внешний вид испытательного стенда

СПМ Для экспериментальных исследований фазовых шумов формирователей когерентных сигналов с использованием образов основной ЦВС лабораторной измерительной частоты воспользуемся установкой, показанной на рис. 4.3.1. Основу данного испытательного стенда составляет микросхема ЦВС AD9910 и отладочная плата, производимая фирмой Analog Devices, использованные ранее в гл. 3 для подтверждения разработанных математических моделей СПМ фазовых шумов.



Рисунок 4.3.2 - Упрощенная схема установки для исследования СПМ фазовых шумов формирователей когерентных сигналов

Умножитель частоты УЧ2 предназначен для увеличения значений основной синтезируемой частоты ЦВС. В данном случае он представляет собой функционально законченный модуль, содержащий три последовательно включенных транзисторных каскада с коэффициентами умножения 2, 2 и 3. Соответственно общий коэффициент умножения каскадов равен 12. Кроме того, в умножителе размещен полосовой фильтр на поверхностных акустических волнах, центральная частота которого соответствует 1670 МГц.

Варианты частотного плана, используемые в эксперименте, приведены в табл. 4.1.5.

С использованием данной измерительной установки был получен ряд экспериментальных зависимостей СПМ фазового шума формирователей сигналов с ЦВС AD9910 от частоты отстройки от несущего колебания при отключенном встроенном умножителе тактовой частоты ЦВС на основе системы ФАПЧ. Для оценки эффективности применения предложенного варианта построения формирователя сигналов с использованием образов основной частоты ЦВС и передискретизации (рис. 4.1.2а) проведена сравнительная оценка его шумовых характеристик с шумовыми характеристиками формирователя с ЦВС на основной тремя транзисторными УЧ2 частоте ee умножением каскадами С И коэффициентом умножения  $n_2 = 12$  (рис. 4.1.26).



Рисунок 4.3.3 – СПМ фазовых шумов ГОЧ SMA100A и их аппроксимация

Результаты экспериментальных измерений, а также математического моделирования шумовых характеристик данного формирователя сигналов приведены на рис. 4.3.4.

Для учета влияния ГОЧ SMA100A на СПМ фазовых шумов формирователей потребовалось провести измерения СПМ фазовых шумов SMA100A для выходной частоты 600 МГц. Результаты данных измерений, а также их аппроксимация для представления в виде математической модели СПМ фазовых шумов показаны на рис. 4.3.3

Из полученных зависимостей следует, что предложенный формирователь

сигналов с ЦВС и совместным использованием образов основной частоты и передискретизации обладает на 2-3 дБ меньшим уровнем фазовых шумов по сравнению с аналогичным формирователем сигналов, использующим умножение основной синтезируемой частоты ЦВС транзисторными каскадами. Данный факт свидетельствует об эффективности предлагаемого варианта формирования сигналов, характеризующегося меньшим уровнем СПМ фазовых шумов и возможностью существенного снижения числа каскадов выходных транзисторных умножителей частоты.



Рисунок 4.3.4 - СПМ фазовых шумов формирователя сигналов на основе интегрального ЦВС AD9910 для тактовой частоты 600 МГц: а) эксперимент: 1 – с использованием выходного умножителя частоты на 12; 2 – с использованием образа основной частоты ЦВС *n*=-3 (основная частота 135 МГц); б) моделирование СПМ фазовых шумов на основной частоте при *n* = 0, и на частоте образа *n* = -3

Из полученных зависимостей следует, что шумовые характеристики предложенного формирователя с использованием образов основной частоты практически совпадают с уровнем фазовых шумов формирователя на основной частоте ЦВС. Однако, при этом коэффициент умножения выходного умножителя  $n_2$  равен 12, а использование третьего отрицательного образа позволяет обойтись без выходного умножителя, т.е.  $n_2$  равен 1. Поэтому, применение образов основной частоту основной частоту основной частоты эффективно, оно позволяет увеличить выходную частоту

формирователя, и уменьшить число каскадов умножителей.

На рис. 4.3.5 показан результат расчета СПМ фазовых шумов формирователя с выходной частотой 1670 МГц для тактовых частот 600, 960 МГц, на основе ЦВС АD9910.

Как видно из рис. 5, уровень СПМ фазовых шумов при тактовой частоте 960 МГц ниже, чем при тактовой 600 МГц. Применение образов позволяет реализовать данный вариант формирователя при коэффициенте умножения  $n_2 = 1$  (-2 образ). Использование передискретизации позволяет дополнительно снизить уровень фазовых шумов на 5 дБ при  $f_T = 600$  МГц, и на 3 дБ при  $f_T = 960$  МГц.



Рисунок 4.3.5. СПМ фазовых шумов формирователя с выходной частотой 1670 МГц с использованием образов основной частоты и передискретизации выходного сигнала ЦВС для тактовой частоты а) 600 МГц, б) 960 МГц

Таким образом, проведенная разработка, математическое моделирование и экспериментальное исследование многоканальной радиосистемы формирования когерентных сигналов с использованием образов основной частоты ЦВС AD9910 подтверждает возможность формирования высокочастотных колебаний с сохранением допустимого уровня фазовых шумов.

#### 4.4 Выводы

1. Осуществлено проектирование и моделирование четырехканального формирователя когерентных сигналов радиосистемы, использующей образы основной частоты ЦВС, с заданными техническими параметрами. Разработана обобщенная структурная схема системы, частотное планирование для каждого из четырех каналов формирования сигналов. Установлено, что наибольшее число вариантов частотного планирования соответствует формирователю сигналов с большей выходной частотой.

2. Рассмотрены два варианта построения каналов формирования сигналов радиосистемы: с использованием образов основной частоты ЦВС и передискретизацией выходного сигнала или с использованием основной частоты ЦВС и применением ее последующего умножения транзисторными каскадами с общим коэффициентом умножения  $n_2 = 12$ .

3. Для сравнения И проведения анализа СПМ фазовых шумов формирователей с использованием и без использования образов основной частоты получены соответствующие математические модели шумовых характеристик, по результатам моделирования установлено, что шумовые характеристики формирователей практически совпадают. При этом в случае использования образов выходной частоты выходной умножитель частоты не требуется.

4. Математическое моделирование также показало, что использование передискретизации позволяет снизить уровень фазовых шумов формирователя сигналов с использованием образов основной частоты ЦВС на 4-5 дБ.

5. Проведено экспериментальное исследование СПМ фазовых шумов формирователей когерентных сигналов с использованием образов основной частоты ЦВС, подтверждающее эффективность предлагаемого варианта формирования сигналов, характеризующегося меньшим уровнем СПМ фазовых шумов и возможностью существенного снижения числа каскадов выходных транзисторных умножителей частоты.

### Заключение

1. Проведен анализ методов построения, важнейших характеристик, достоинств и недостатков современных цифровых вычислительных синтезаторов, показаны их преимущества перед другими методами синтеза, а также перспективность использования в качестве формирователей сигналов. Показано, что одним из основных недостатков интегральных цифровых вычислительных синтезаторов, затрудняющих их применения в качестве формирователей стабильных частот и сигналов, является ограничение максимального значения синтезируемой частоты значением в 1500-1700 МГц. Обоснована возможность использования копий спектра выходного сигнала цифровых вычислительных синтезаторов для повышения выходных частот формирователей когерентных сигналов.

2. Разработана обобщенная структурная схема формирователя когерентных сигналов с использованием копий спектра выходного сигнала цифровых вычислительных синтезаторов, позволяющая повысить выходную частоту устройства более чем на порядок, либо без применения умножителей частоты, либо при минимально возможном ИХ количестве. Исследован эффект передискретизации выходного сигнала цифроаналогового преобразователя цифрового вычислительного синтезатора, позволяющий изменить соотношение шум/сигнал гармоник образов за счет энергии гармоники основной частоты.

3. Разработан алгоритм и программное обеспечение для частотного планирования формирователей когерентных сигналов с использованием копий цифровых спектра выходного сигнала вычислительных синтезаторов. Специализированный программный комплекс частотного планирования формирователей сигналов, использующих образы основной частоты цифровых содержит модули расчета реализуемых на вычислительных синтезаторов, практике действительных И целочисленных комбинаций коэффициентов умножения умножителей частоты. Вторая программа частотного планирования, разработанная на языке С++, позволяет провести оптимизацию поиска вариантов в рассчитанном частотном плане, по минимальному значению коэффициента умножения выходного умножителя частоты.

4. Разработана и подтверждена экспериментально математическая модель спектральной плотности мощности фазовых шумов цифровых вычислительных синтезаторов с использованием копий спектра выходного сигнала, позволяющая на стадии проектирования с погрешностью 3 дБн/Гц проводить оценку спектральной плотности мощности фазовых шумов разрабатываемых устройств. С использованием данной модели разработаны математические модели шумовых формирователей частот с использованием образов и характеристик без использования образов основной частоты выходного сигнала цифровых вычислительных синтезаторов.

5. Теоретически и экспериментально исследованы шумовые свойства двух вариантов построения каналов формирования сигналов радиосистемы: с использованием копий спектра выходного сигнала цифровых вычислительных синтезаторов и передискретизацией выходного сигнала; а также с использованием основной частоты и применением ее последующего умножения транзисторными каскадами с общим коэффициентом умножения  $n_2 = 12$ . Математическое моделирование показало, что использование передискретизации позволяет улучшить шумовые характеристики формирователя с применением копий спектра сигнала цифровых вычислительных синтезаторов на 4-5 дБ.

6. На основе полученных результатов осуществлено проектирование и четырехканального формирователя моделирование когерентных сигналов радиосистемы, использующей копии спектра сигнала цифровых вычислительных синтезаторов, с заданными техническими параметрами. Разработана обобщенная структурная схема системы, проведено частотное планирование для каждого из формирования Проведено четырех каналов сигналов. математическое моделирование шумовых характеристик каналов формирования когерентных сигналов. Проведенные экспериментальные исследования подтвердили результаты математического моделирования шумовых характеристик формирователей когерентных сигналов.

Полученные результаты свидетельствуют о том, что в диссертационной работе решена важная научная задача повышения выходных частот формирователей высокочастотных когерентных сигналов за счет использования копий спектра выходного сигнала – образов основной частоты цифровых вычислительных синтезаторов, что позволило снизить уровень фазовых шумов на 4-5 дБ формирователей и уменьшить либо исключить дополнительные умножители частоты.

## СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

- SDMA множественный доступ с пространственным разделением каналов;
- АК аналоговый коммутатор;
- ГОЧ генератор опорной частоты;
- ГП генератор подставки;
- ИУ измеряемое устройство;
- КПД коэффициент полезного действия;
- ЛЗ линия задержки;
- МШУ малошумящий усилитель;
- Образы продукты зеркального отображения гармоник основной частоты

относительно гармоник частоты тактового сигнала (копии спектра выходного сигнала):

ПЗУ – постоянное запоминающее устройство;

- ПС преобразователь скважности;
- ПФ полосовой фильтр;
- СВЧ сверхвысокие частоты;
- См смеситель;
- СПМ спектральная плотность мощности;
- УВЧ ультравысокие частоты;
- УЧ умножитель частоты;
- ФАПЧ фазовая автоподстройка частоты;
- ФВ фазовращатель;
- ФД фазовый детектор;
- ФНЧ фильтр нижних частот;
- ЦАП цифроаналоговый преобразователь;
- ЦВС цифровой вычислительный синтезатор.

#### Литература

1. Kroupa, V.F. Direct Digital Frequency Synthesizers. / V.F. Kroupa – New York: John Wiley & Sons, Ltd, 1998. – 396 c.

2. Jouko Vankka. Direct Digital Synthesizers: Theory, Design and Applications: diss. Doctor of Science in Technology / Jouko Vankka. – Helsinki : University of Technology, 2000. – 208 c.

3. Kochemasov, Y.N. Narrow-band direct digital synthesizers. in Proceedings of the 1995 / Y.N. Kochemasov, A.N.Zharov // IEEE International Frequency Control Symposium. San Francisco, California, USA (IEEE Publication 95CH35752), 31 May-2 June 1995. - Pp. 236-249.

4. Мёрфи, Е. Всё о синтезаторах DDS / Е. Мёрфи, К. Слэттери, перевод:
А. Власенко // Analog Dialogue 38-08. – 2004. – Август.

5. Мерфи, Е. Прямой цифровой синтез (DDS) / Е. Мерфи, К. Слеттери, перевод А. Власенко // Компоненты и технологии. – 2006. – №8.

6. Рябов, И.В. Синтез радиотехнических систем и устройств. Методы прямого цифрового синтеза прецизионных сигналов / И.В. Рябов. // Радиотехника. - 2006. – №9. – С. 13-16.

7. Technical Tutorial on Digital Signal Synthesis. /Analog Devices, 1999, Inc., - 122 p.

8. Стешенко, В. Цифровые синтезаторы прямого синтеза частот. / В.
 Стешенко. // Компоненты и технологии, 2002. – №7.

9. Brandon, David. Direct Digital Synthesizers in Clocking Applications
Time Jitter in Direct Digital Synthesizer-Based Clocking Systems / David Brandon
// Analog Devices. ©2006. – Pp. 1-8.

Макаренко, В. Синтезаторы частоты прямого цифрового синтеза.
 / В. Макаренко // Chip-news. - 2006. - №6 (109). – С. 24 - 27.

11. Макаренко, В. Компоненты для построения беспроводных устройств связи, часть 7. Синтезаторы частоты прямого цифрового синтеза /

В. Макаренко // Электронные компоненты и системы – 2010. - №3. - С. 34 - 46.

12. Цифровые синтезаторы сигналов (DDS) и модуляторы [Электронный pecypc]: сайт фирмы Analog Devices, Inc., 2018. URL: <u>http://www.analog.com/ru/rfif-components/direct-digital-synthesis-</u> <u>dds/products/index.html</u>.

13. Цифровые синтезаторы сигналов (DDS) [Электронный ресурс]: сайт фирмы Qualcomm, Inc., 1996 <u>https://www.qualcomm.com/news/</u>releases/1996/05/07/qualcomm-introduces-new-high-speed-dual-direct-digitalsynthesizer

 14. Цифровой вычислительный синтезатор 1508ПЛ8Т [Электронный ресурс]:
 сайт фирмы НПЦ «Элвис» (Россия)

 http://multicore.ru/index.php?id=466

15. Генераторы опорной частоты [Электронный ресурс]: сайт фирмы МОРИОН <u>http://www.morion.com.ru/</u>.

16. Ямпурин Н.П. Формирование прецизионных частот и сигналов:
учеб. пособие / Н.П. Ямпурин, В.В. Болознев, Е.В. Сафонова, Е.Б. Жалнин –
Н. Н.: Нижегородский. гос. техн. ун-т., 2003. – 187 с.: ил.

17. Kuleshov, V.N. Fundamental noise in direct digital frequency synthesizers, in Proceedings of the 1995 / V.N. Kuleshov and Y.H. Liu // IEEE International Frequency Control Symposium. San Francisco, California, USA (IEEE Publication 95CH35752), 31 May2 June 1995. - Pp. 288-293.

Bredeson, Jon. Direct Digital Frequency Synthesizer / Jon Bredeson,
 Micheal Parten, John Borrelli. // Texas Tech University, Shashikant Shrimali. May 2007.

19. Kroupa, V.F. Discrete Spurious Signals and Background Noise in Direct Digital Frequency Synthesizers / V.F. Kroupa // Proc. 1993 IEEE Int.Freq.Control Symposium. - Pp. 242-250.

20. Chenakin, Alexander. Frequency synthesis: current solutions and new trends. / Alexander Chenakin // Microwave journal, May 2007. – Pp. 256 - 266.

21. Chenakin, Alexander. Building a Microwave Frequency SynthesizerPart 1: Getting Started / Alexander Chenakin // High Frequency Electronics. 2008. – May. – Pp 58-67.

22. Белов, Л.А. Современные синтезаторы стабильных частот и сигналов // Л.А. Белов // Радиотехника. - 2007. – №3. – С. 21-25.

23. Белов, Л. Синтезаторы стабильных частот. / Л. Белов. //
 Электроника: Наука, Технология, Бизнес. - 2004. - №3. - С. 38-44.

24. Рыжков, А.В. Синтезаторы частот в технике радиосвязи / А.В. Рыжков, В.Н. Попов. // М.: Радио и связь, 1991. – 264 с.

25. Манассевич, В. Синтезаторы частот. Теория и проектирование: Пер. с англ. / Под. ред. А.С. Галина. - М.: Связь, 1979. - 384 с.

26. Кулешов, В.Н. Генерирование колебаний и формирование радиосигналов / В.Н. Кулешов, Н.Н. Удалов, В.М. Богачев. – М.: Издательский дом МЭИ, 2008. – 416 с.

27. Левин, В.А. Методы построения синтезаторов частот в СВЧдиапазоне / В.А. Левин, А.А. Черкашин // Электросвязь. – 2004. - Вып. 2. -С.19-22.

28. Кусов, Г.А. Формирование высокостабильных сигналов миллиметрового диапазона для радиолокационных устройств / Г.А. Кусов, Д.С. Очков, Л.В. Ратцева, Е.А. Силаев, А.А. Сударенко, М.Я. Терёхин, И.С. Формальнов, В.П. Шилов // Радиотехника. – 2006. - №4. - С.33-35.

29. Молчанов, Е.Г. Источники сигнала СВЧ-диапазона с низким уровнем фазовых шумов для систем радиолокации и связи / Е.Г. Молчанов, Д.С. Очков, Е.А. Силаев, И.С. Формальнов, Д.В. Чубаров // Радиотехника. – 2006. - №10. - С.38-40.

30. E. da Silva. High Frequency and Microwave Engineering / E. da Silva. – MPG Books Ltd, Bodmin, Cornwall, 2001. – 440 c.

31. Jon B. Hagen. Radio-FrequencyElectronics.Circuits and Applications
/ Jon B. Hagen. – Cambridge University Press, 1996, 2009. – 454 c.

32. Брагина, Я.А. Математическое моделирование выходных колебаний вычислительных синтезаторов частот и сигналов / Я.А. Брагина, В.С. Станков, Н.П. Ямпурин // Проектирование и технология электронных средств. - 2007. - №3. – С. 36 - 42.

33. Bengtsson, M. A DSP controlled data acquisition system for CELSIUS. / M. Bengtsson, T. Lofnes, V. Ziemann. // Nuclear Instruments and Methods in Physics Research A 441. - 1999. – May. – Pp. 76-81

34. Song, Feihu. A High Precision Stray-immune Weak Capacitance Measurement System for Gassolid Two-phase Flows Detection. / Feihu Song, Hui Hong, Shuai Liu. // AASRI International Conference on Industrial Electronics and Applications. – 2015. – Pp. 143-146.

35. Dos Santos, Greg José. Capacitive measuring system for two-phase flow monitoring. / Greg José dos Santos, Nikolas Libert, Rigoberto E.M. Morales, Marco José da Silva // IV Journeys in Multiphase Flows (JEM 2015) Campinas, SP, Brazil. – 2015. - March 23-27. – Pp. 1-7

36. Calosso, C. E. Doppler- stabilized fiber link with 6 dB noise improvement below the classical limit. / C. E. Calosso, E. K. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, S. Micalizio, A. Mura, A. Godone. // January 15, 2015 - Vol. 40, No. 2 – Pp 1-5.

37. Hernando, Mario Calvo. Electronic instrumentation for a 3d electrical impedance tomography application: Master of Science Thesis. / Mario Calvo Hernando. - Examiners and topic approved in the Faculty of Computing and Electrical Engineering council meeting on March 4th 2015.

38. Cheng, Y. S. Embedded environment with epics support for control applications. / Y. S. Cheng, Demi Lee, C. Y. Liao, C. H. Huang, K. T. Hsu. // Proceedings of ICALEPCS2015, Melbourne, Australia - Pre-Press Release 23-Oct-2015. - National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan – 2015.

39. Yogesh P. Sajjan. FPGA based digital beam forming for phased array radar. / P. Sajjan Yogesh, R. Krishna, H. Shahul. // International Journal of

Engineering Research and General Science. - September-October, 2015. - Volume 3, Issue 5.

40. Godbole, B.B. FPGA implementation of cordic algorithm used in DDS based modulators. / B.B. Godbole, R.H. Nikam //International Journal of Advanced Research in Computer and Communication Engineering. - 2015. – January. - Vol. 4, Issue 1. – Pp 94-97.

41. Keller, Phillip. NMR magnetometry present and future. / Phillip Keller //MAGNETICS TECHNOLOGY INTERNATIONAL - 2016. – Pp 28-29.

42. Bobalo, Yuriy. Pulse sequence shaper for radiospectroscopy and relaxation methods in NQR. / Yuriy Bobalo, Zenon Hotra, Oleksandra Hotra, Leonid Politans'kyy, Andriy Samila. // METROLOGY AND MEASUREMENT SYSTEMS, - 2015. - №3. – Pp. 363 -370.

43. Jivet I., Dragoi B. Performance Analysis of Direct Digital Synthesizer
Architecture with Amplitude Sequencing / Issue 1, Volume 7, January 2008. – p.
1-6.

44. Yang, Byung-Do. A Direct Digital Frequency Synthesizer Using A New ROM Compression Method / Byung-Do Yang, Ki-Hyuk Sung, Young-Joon Kim, Lee-Sup Kim,Seon-Ho Han, and Hyun-Kyu Yu // Department of EECS, KAIST, 373-1 Kusong-dong, Yusong-gu, Taejon, 305-701, KOREA/

45. Comberiate, Thomas M. Phase noise model for an array of combined sources using Direct Digital Synthesis (DDS) / Thomas M. Comberiate, J. P. Van't Hof, Laura B. Ruppalt, Keir C. Lauritzen, and Salvador H. Talisa. - JHU Applied Physics Laboratory, Laurel, MD 20723, USA – 2008. – Pp. 301 - 313.

46. LEE, Jung-Seob. Implementing and Optimizing a Direct Digital Frequency Synthesizer (DDFS) on FPGA / Jung-Seob LEE, Xiangning Yang. // May 10, – 2006. – Pp. 1-12.

47. Fa Foster Dai. A Direct Digital Frequency Synthesizer With Fourth-Order Phase Domain Noise Shaper and 12-bit Current-Steering DAC / Fa Foster Dai, Senior Member, Weining Ni, Shi Yin and Richard C. Jaeger // IEEE Journal of Solid-State Circuits, VOL. 41, NO. 4, - April 2006. – p. 839-850. 48. Gu, C. Z. DDS Based Radar Signal Generator for Microwave Remote Sensing / C. Z. Gu, S. Qiao, J. T. Huangfu; and L. X. Ran // Progress In Electromagnetics Research Symposium, Hangzhou, China, March 24-28, – 2008. – p. 90-93.

49. Ashrafi, Ashkan. A 1GHz Direct Digital Frequency Synthesizer Based on the Quasi-Linear Interpolation Method / Ashkan Ashrafi, Aleksandar Milenković, and Reza Adhami. // Department of Electrical and Computer Engineering The University of Alabama in Huntsville Huntsville, AL 35899, USA. - 2007. – Pp. 2766-2769.

50. Mohieldin, Ahmed Nader. A 100-MHz 8-mW ROM-Less Quadrature
Direct Digital Frequency Synthesizer / Ahmed Nader Mohieldin, Ahmed A. Emira,
Edgar Sánchez-Sinencio. // IEEE Journal of Solid-State Circuits, VOL. 37, NO. 10.
2002. – October. – p. 1235-1243.

51. Ashrafi, Ashkan. Arbitrary Waveform DDFS Utilizing Chebyshev Polynomials Interpolation / Ashkan Ashrafi, Reza Adhami, Laurie Joiner, Parisa Kaveh. // IEEE Transactions on Circuits and Systems—I: Regular Papers, VOL. 51, NO. 8. - 2004. – August. – Pp. 1468-1475.

52. Lindeberg, Jonne. A 1.5-V Direct Digital Synthesizer With Tunable Delta-Sigma Modulator in 0.13- m CMOS / Jonne Lindeberg, Jouko Vankka, Johan Sommarek, Kari Halonen // IEEE Journal of Solid-State Circuits, VOL. 40, NO. 9. - 2005. - September – Pp. 1978-1982.

53. Yum, Xuefeng. 2 GHz 8-bit CMOS ROM-Less Direct Digital Frequency Synthesizer / Xuefeng Yu, Foster F. Dai. // Department of Electrical and Computer Engineering 200 Broun Hall, Auburn University Auburn, AL 36849-5201, USA. – 2005. – Pp. 4397-4400.

54. Jridi, Maher. Direct Digital Frequency Synthesizer with CORDIC Algorithm and Taylor Series Approximation for Digital Receivers / Maher Jridi, Ayman Alfalou // European Journal of Scientific Research ISSN 1450-216X Vol.30 No.4 – 2009. – Pp. 542-553.
55. Lowell, M.A. A low-cost Digital Synthesizer / M.A. Lowell // Microwave journal. - 2008. – March. - Pp. 174 - 176.

56. Katkar, Prajakta J. Direct digital synthesis based CORDIC algorithm: a novel approach towards digital modulations IJRET: / Prajakta J. Katkar, Yogesh S. Angal. International Journal of Research in Engineering and Technology

57. Sinha, Akanksha. Design and Implementation of Area Efficient BPSK and QPSK Modulators Based On FPGA. /Akanksha Sinha, Piyush Lotia //International Journal for Research in Applied Science & Engineering Technology (IJRASET). - 2015. – Pp. 188-194.

58. Kushwaha, Monika. Design and Simulation of Direct Digital Synthesizer for Wireless Applications. / Monika Kushwaha, U. M Gokhale. // Journal of The International Association of Advanced Technology and Science, March of 2015.

59. Jiang, Zhanpeng. Design of a ROM-Less Direct Digital Frequency Synthesizer on FPGA. / Zhanpeng Jiang, Rui Xu, Hai Huang and Changchun Dong // International Journal of Signal Processing, Image Processing and Pattern Recognition - Vol. 8, No. 5 (2015). - pp. 327-340.

60. Patel, Mayank. Design of BPSK/QPSK Modulator using Verilog HDL and Matlab. / Mayank Patel, Nirav Desai, Bhavesh Soni, Ashish Purani. // Communications on Applied Electronics Foundation of Computer Science FCS, New York, USA Volume 2 – No.3. - June 2015.

61. Pawar, Anjali. Direct Digital Synthesizer Based on FPGA. / Anjali Pawar // International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering . Vol. 4, Issue 7, July 2015

62. John Esterline. Phase noise: theoryversus practicality. – Microwave journal, April 2008. – Pp. 72-86.

63. Kuleshov, V. N. 1/f Fluctuations Sources in Direct Digital Frequency Synthesizers and Their Contribution to the Output Oscillations Power Spectral Density, in Proceedings of the 1995 / V. N. Kuleshov, Y. H. Liu and B. E. Kuleshov // IEEE International Frequency Control Symposium. San Francisco, California, USA (IEEE Publication 95CH35752), 31 May-2 June 1995. - Pp. 282-287.

64. Kuleshov, V.N. Fundamental noise in direct digital frequency synthesizers, in Proceedings of the 1995 / V.N. Kuleshov and Y.H. Liu // IEEE International Frequency Control Symposium. San Francisco, California, USA (IEEE Publication 95CH35752), 31 May2 June 1995. - Pp. 288-293.

65. Цыпленков, Ю.С. Влияние коэффициента умножения тактовой частоты на уровень фазового шума цифрового вычислительного синтезатора / Ю.С. Цыпленков // Вопросы радиоэлектроники, сер. Радиолокационная техника. – 2009. - вып.11. - С. 146 – 153.

66. Рютман Ж. Характеристики нестабильности фазы и частоты сигналов высокостабильных генераторов: Итоги развития за пятнадцать лет / Ж. Рютман // ТИИЭР. – 1978. – Т.66. – № 99. – С. 70-102.

67. Puglia, K.V. Oscillator phase noise: theory and prediction. / K.V. Puglia. // Microwave journal. - 2007. – September. – Pp. 178-194.

68. Жалуд, В. Шумы в полупроводниковых устройствах / В. Жалуд,
В.Н. Кулешов // Под ред. А.К.Нарышкина. – М.: Сов. Радио, 1977. – 417 с.

69. Lawrence P. Dunleavy. Understanding noise parameter measurement / Lawrence P. Dunleavy // Microwave journal. - 2009. – February. - Pp. 92 - 100.

70. Бельчиков, С. Фазовый шум: как спуститься ниже –120 дБн/Гц на отстройке 10 кГц в диапазоне частот до 14 ГГц, или Борьба за децибелы // Компоненты и технологии. - 2009. - № 5. - С.139 - 146.

71. Kroupa, V.F. Frequency stability: introduction and applications /
 V.F. Kroupa . – John Wiley & Sons, Ltd .– 2012. – 302 c.

72. Direct Digital Synthesizer AD9910 // <u>http://www.analog.com/ru/rfif-</u> components/direct-digital-synthesis-dds/ad9910/products/product.html.

73. Методы измерения уровня фазовых шумов [Электронный ресурс]: сайт фирмы Agilent, Inc., 2018. URL: <u>https://www.agilent.com/home</u>

74. Hozworth Instrumentation, Boulder, CO. Ultra Low Phase Noise-Phase Coherent Synthesizers / Hozworth Instrumentation, Boulder, CO. // Military Microwaves Supplement. - 2009. – August. – Pp. 48 - 52

75. Ромашов В.В., Храмов К.К. Формирование сигналов в ОВЧ- и УВЧ-диапазонах при использовании метода прямого цифрового синтеза частот // Радиотехника. 2007, № 6. С. 39-41.

76. Левин, В.А. Методы построения синтезаторов частот в СВЧдиапазоне / В.А. Левин, А.А. Черкашин // Электросвязь - 2004. - №2. - С. 19 -22.

77. Шапиро, Д.Н. Основы теории синтеза частот / Д.Н. Шапиро, А.А. Паин. – М.: Радио и связь, 1981 – 264 с.

78. Kroupa, V.F. Phase Lock Loops and Frequency Synthesis. /V.F. Kroupa // John Wiley & Sons, Ltd ISBN: 0-470-84866-9. – 2003. - 320 c.

79. Голуб, В. Несколько слов о системе ФАПЧ / В. Голуб // Компоненты и технологии. - 2003. - №8. – С. 92-96.

80. Левин, В.А. Синтезаторы частот с системой импульсно-фазовой автоподстройки / В.А. Левин, В.П. Малиновский, С.К. Романов. - М.: Радио и связь, 1989. - 232 с.

81. Heydari, Payam. Analysis of Jitter due to Power-Supply Noise in Phase-Locked Loops / Payam Heydari, Massoud Pedram // Dept. of EE-Systems, University of Southern California Los Angeles, CA 90089.

82. Молчанов, Е.Г. Результаты экспериментальных исследований фазовых шумов сигналов гетеродинов когерентной РЛС / Е.Г. Молчанов, Д.С. Очков, Е.А. Силаев, И.С. Формальное. – Радиотехника. - 2008. – №4. – С. 54-56.

83. Тихомиров, Н.М. Формирование ЧМ сигналов в синтезаторах с автоподстройкой / Н.М. Тихомиров, С.К. Романов, А.В. Леньшин. – М.: Радио и связь, 2004. - 210 с.

84. Kroupa, V. F. Precise Frequency Generators. / V. F. Kroupa // The Institute of Radio Engineering and Electronics Academy of Sciences of the Czech Republic, 182 51 Praha, Czech Republic.

Rohde, Ulrich L. Frequency Generation and Synthesis: costeffective
 & Powerefficient solutions. / Ulrich L. Rohde, Ajay K. Poddar //- Microwave
 journal. - May 2009. - Pp. 160-184.

86. Котов, А.С. Транзисторные СВЧ генераторы с комбинированной стабилизацией частоты / А.С. Котов // Радиотехника. - 2007. – №3. – С. 26-32.

87. Очков, Д.С. Источники сигнала СВЧ-диапазона с низким уровнем
фазовых шумов для систем радиолокации и связи / Д.С.Очков, Е.А.Силаев,
И.С. Формальнов, Д.В.Чубаров // Радиотехника. – 2006.– №10. - С. 38 - 40.

88. Synthesizer Products Data Book Data Subject to Change Without Notice For customer service or technical assistance, please contact. / QUALCOMM Incorporated, ASIC Products 6455 Lusk Boulevard, San Diego, CA 92121-2779, USA.

89. Кусов, Г.А. Формирование высокостабильных сигналов миллиметрового диапазона для радиолокационных устройств // Г.А. Кусов, Д.С.Очков, Л.В. Ратцева, Е.А.Силаев, А.А. Сударенко, М.Я.Терёхин, И.С. Формальнов, В.П.Шилов // Радиотехника. – 2006.– №4.– С. 33-35.

90. Vsevolod Tanygin. A practical design of a low phase noise airborne xband frequency synthesizer / Vsevolod Tanygin // Microwave journal. - 2006. – October. - Pp. 92 – 114

91. Кобельков, Г.П. Создание РЛС радиовидения в миллиметровом диапазоне длин волн / Г.П. Кобельков, А.А. Курикша, Б.А.Левитан, Д.С.Очков, Г.К.Соловьёв, А.А.Толкачёв, С.А.Топчиев, В.Е.Фарбер // Радиотехника. – 2006.– №10.– С. 14-18.

92. Quemada, C. A CMOS Frequency Synthesizer with self-biasing current source for a 5 ghz wireless lan receiver. / C. Quemada, H. Solar, G. Bistué, I. J. DE NO. // Microwave journal. – February. - 2007. - Pp. 68-98.

93. Садченков, Д. Синтезаторы частоты диапазона UHF / Д. Садченков // Компоненты и технологии. - 2001. - №4.

94. Прохладин, Г.Н. Моделирование шумовых характеристик синтезаторов частот на основе систем ИФАПЧ / Г.Н. Прохладин // Радиотехника. - 2006. – №2. – С. 37-41.

95. Макаренко, В. Моделирование синтезаторов с ИМС ФАПЧ компании Analog Devices с помощью программы ADIsimPLL / В. Макаренко // Электронные компоненты и системы – 2010. - №4. - С. 51 - 58.

96. Шахгильдян, В.В. Системы фазовой автоподстройки частоты / В.В. Шахгильдян, А.А. Ляховкин //- М.: Связь. - 1972. - 445 с.

97. Макаренко, В. Универсальный широкополосный синтезатор частоты со встроенным ГУН / В. Макаренко, Б. Паращак // Электронные компоненты и системы. - 2009. - №4. - С. 56-61.

98. Xurui, Mao. A 900 MHz fractional-N synthesizer for UHF transceiver in 0.18m CMOS technology. / Mao Xurui. Huang Beiju. Chen Hongda. // Journal of Semiconductors. - 2014. - №12. -

99. Kameche, Samir. Simulating and Designing a PLL Frequency Synthesizer for GSM Communications / Samir Kameche, Mohammed Feham, Mohamed Kameche // From ecember 2008 High Frequency Electronics Copyright © 2008 Summit Technical Media, LLC. - 2008. - December. – p. 36-41.

100. Бессекерский, В.А. Теория систем автоматического регулирования. / В.А. Бессекерский, Е.П. Попов. – М.: Наука, 1975. – 768 с.

101. Дмитриев, С. Радиочастотный синтезатор частот с дробным коэффициентом деления / С. Дмитриев, Ю. Никитин // Компоненты и технологии. – 2004. – №6.

102. Дмитриев, С. Двойные радиочастотные синтезаторы с дробным коэффициентом деления / С. Дмитриев, Ю. Никитин // Компоненты и технологии. – 2003. – №2.

103. Кестер, У. Аналого-цифровое преобразование /У. Кестер, перевод под ред. Е.Б. Володина. – Москва: Техносфера, 2007. - 1016 с. ISBN 978-5-94836-146-8

104. Гоноровский, И.С.. Радиотехнические цепи и сигналы: Учебник для вузов. 4-е изд. перераб. и доп./ И.С. Гоноровский. – М.: Радио и связь, 1986. – 512 с.

105. Ромашов В.В., Мергурьев А.В. Исследование применения образов для повышения рабочей частоты DDS синтезатора // Методы и устройства передачи и обработки информации. 2009, № 11. С. 93-97.

106. Ромашов, В.В. Методы повышения частоты выходного сигнала формирователей на основе цифровых вычислительных синтезаторов / В.В. Ромашов, К.К. Храмов, А.Н. Докторов // Проектирование и технологии РЭС. – 2014. - №1 – С. 2-7.

107. Докторов, А.Н. Применение образов цифровых вычислительных синтезаторов для повышения выходной частоты и улучшения шумовых характеристик формирователей сигналов / А.Н. Докторов, И.С. Харитонова // Научный потенциал молодежи – будущее России. VI Всероссийские научные Зворыкинские чтения: сб. тез. докл. Муром, 25 апр. 2014 г.– Муром: ИПЦ МИ ВлГУ, 2014.– С.430-432.

108. Ромашов В.В., Храмов К.К. Формирователи сетки опорных частот возбудителя передатчика с использованием образов основной частоты // Методы и устройства передачи и обработки информации. 2011, №13. С. 45-48.

109. Ромашова, Л.В. Моделирование спектральных характеристик цифровых вычислительных синтезаторов частот / Л.В.Ромашова, А.В.Ромашов // Проектирование и технология электронных средств. - 2010. - №1. - С. 19 – 22.

110. Ромашов, В.В. Частотное планирование формирователей сигналов радиосистем на основе цифровых вычислительных синтезаторов /

В.В. Ромашов, К.К. Храмов, А.Н. Докторов // Радиотехнические и телекоммуникационные системы. – 2012. - №4 – С.10-16.

111. Ромашов, В.В. Модель цифрового вычислительного синтезатора, работающего на образах основной частоты / В.В. Ромашов, К.К. Храмов, А.Н. Докторов // Радиотехнические и телекоммуникационные системы. – 2012. - №2 – С.13-17.

112. Ромашов, В.В. Экспериментальные исследования спектра выходного сигнала цифрового вычислительного синтезатора / В.В. Ромашов, А.Н. Докторов, И.С. Харитонова // Наука и образование в развитии промышленной, социальной и экономической сфер регионов России. VII Всероссийские научные Зворыкинские чтения: сб. тез. докл. – Муром, 6 февр. 2015 г. – Муром: ИПЦ МИ ВлГУ, 2015. – С. 217-218.

113. Ромашов, В.В. Исследование спектра шумов квантования выходного сигнала ЦВС / В.В. Ромашов, К.К. Храмов, А.Н. Докторов // Наука И образование В развитии промышленной, социальной И экономической сфер регионов России. VI Всероссийские научные Зворыкинские чтения: сб. тез. докл. Муром, 14 февр. 2014 г. – Муром: ИПЦ МИ ВлГУ, 2014.- С.319.

114. Докторов, А.Н. Анализ спектральных характеристик интегральных цифровых вычислительных синтезаторов частоты со встроенным умножителем тактовой частоты / А.Н. Докторов // Научный потенциал молодежи – будущее России. Ш Всероссийские научные Зворыкинские чтения: сб. тез. докл. Муром, 22 апр. 2011 г.– Муром: ИПЦ МИ ВлГУ, 2011.– С.402-404.

115. Romashov, V.V. The use of images of DDS fundamental frequency for high-frequency signals formation / V.V. Romashov, K.K. Khramov, A.N. Doktorov // 24th International Crimean Conference Microwave and Telecommunication Technology, CriMiCo. - 2014. - Pp. 310-311. Category numberCFP14788-CDR; Code 109221. (DOI: 10.1109/CRMICO.2014.6959408).

116. Ромашов, В.В. Методы повышения частоты выходного сигнала формирователей на основе цифровых вычислительных синтезаторов / В.В. Ромашов, Л.В. Ромашова, К.К. Храмов, А.Н. Докторов // Наука и образование в развитии промышленной, социальной и экономической сфер регионов России. VI Всероссийские научные Зворыкинские чтения: сб. тез. докл. Муром, 14 февр. 2014 г.– Муром: ИПЦ МИ ВлГУ, 2014.– С.299-301.

117. Ромашов, В.В. Частотное планирование формирователей сигналов на основе интегральных цифровых вычислительных синтезаторов / В.В. Ромашов, А.Н. Докторов // Наука и образование в развитии промышленной, социальной и экономической сфер регионов России. IV Всероссийские научные Зворыкинские чтения: сб. тез. докл. – Муром, 3 февр. 2012 г. – Муром: ИПЦ МИ ВлГУ, 2012.– С.341-343.

118. Докторов, А.Н. Исследование влияния передискретизации выходного сигнала цифрового вычислительного синтезатора на уровень дискретных составляющих / А.Н. Докторов, Д.А. Хазов // Методы и устройства передачи и обработки информации, 2016, № 17. С. 4-11.

119. Ромашов, В.В. Исследование влияния передискретизации на спектр выходного сигнала цифрового вычислительного синтезатора /В.В. Ромашов, Л.В. Ромашова, К.К. Храмов, А.Н. Докторов // Наука и образование в развитии промышленной, социальной и экономической сфер регионов России. VII Всероссийские научные Зворыкинские чтения: сб. тез. докл. – Муром, 6 февр. 2015 г. – Муром: ИПЦ МИ ВлГУ, 2015.– С. 221-222.

120. Докторов, А.Н., Якименко К.А. Алгоритм частотного планирования формирователя сигналов на основе цифровых вычислительных синтезаторов в режиме образов основной частоты / А.Н. Докторов, К.А. Якименко // Научный потенциал молодежи – будущее России: V Всероссийские научные Зворыкинские чтения: сб. тез. докл. – Муром, 22 апр. 2013 г. – Муром: ИПЦ МИ ВлГУ, 2013. – С. 320-321.

121. Докторов, А.Н. Анализ алгоритма частотного планирования формирователей сигналов с использованием образов основной частоты

цифровых вычислительных синтезаторов / А.Н. Докторов // Методы и устройства передачи и обработки информации, 2017, № 19. С. 16-22.

122. Докторов, А.Н. Анализ алгоритма частотного планирования формирователей сигналов с использованием образов основной частоты цифровых вычислительных синтезаторов / А.Н. Докторов // Перспективные технологии в средствах передачи информации: Материалы 12-ой международной научнотехнической конференции / Владим. гос. университет; редкол.: А.Г. Самойлов (и др). – Владимир: ВлГУ. 2017. – С.43-45.

123. Ромашов В.В., Храмов К.К. Программный комплекс для частотного планирования и исследования шумовых характеристик формирователей сигналов на основе ЦВС // Методы и устройства передачи и обработки информации. 2013, №1. С.22-27.

124. Ромашов, В.В. Программа расчета частотного плана формирователя сигналов, построенного на базе цифрового вычислительного синтезатора / В. В. Ромашов, К.К. Храмов, А.Н. Докторов // Свидетельство о государственной регистрации программы для ЭВМ № 2015610107, 2015.

125. Докторов A.H. Программа частотного планирования формирователей сигналов с применением образов основной частоты цифровых вычислительных синтезаторов / А.Н. Докторов, А.С. Базжин // Наука И образование В развитии промышленной, социальной И экономической сфер регионов России. VII Всероссийские научные Зворыкинские чтения: сб. тез. докл. Муром, 9 февр. 2018 г. – Муром: ИПЦ МИ ВлГУ, 2018.– С.307-308.

126. Никитин, О.Р. Разработка модели относительной спектральной плотности фазовых шумов цифровых вычислительных синтезаторов / О.Р. Никитин, Л.В. Ромашова // Вопросы радиоэлектроники, сер. РЛС. – 2011. – Вып. 1. – С. 25-33.

127. Ромашов В.В., Ромашова Л.В. Моделирование шумовых характеристик интегральных цифровых вычислительных синтезаторов // Радиотехнические и телекоммуникационные системы. 2011, №4. С.20-23

128. Ромашов, В.В. Анализ результатов измерения шумовых характеристик цифрового вычислительного синтезатора AD9910 / В.В. Ромашов, А.Н. Докторов // Наука и образование в развитии промышленной, социальной и экономической сфер регионов России. IX Всероссийские научные Зворыкинские чтения: сб. тез. докл. Муром, 17 февр. 2017 г.– Муром: ИПЦ МИ ВлГУ, 2017.– С.77-79.

129. Romashov, V.V. Simulation of Noise Curves of the New Integrated DDS from Analog Devices / V.V. Romashov, L.V. Romashova, K.K. Khramov, A.N. Doktorov // Proc. of the 2013 Int. Siberian Conf. on Control and Communications (SIBCON). – Krasnoyarsk: Siberian Federal University. Russia, Krasnoyarsk. - 2013. - September 12–13. - Pp 23-26. IEEE Catalog Number: CFP13794-CDR.

130. Ромашов В.В., Ромашова Л.В. Методика расчета коэффициентов аппроксимации спектральной плотности мощности фазовых шумов цифровых вычислительных синтезаторов // Радиотехнические и телекоммуникационные системы. 2012, №1. С. 23-26.

131. Romashov V.V. The Regression Model of Power Spectral Density of Phase Noise of Direct Digital Synthesizers / V.V. Romashov, L.V. Romashova, K.K. Khramov // 2016 International Siberian Conference on Control and Communications (SIBCON 2016) Moscow, Russia. – 2016. – 12-14 May. – Pp.557-561.

132. Ромашова, Л.В. Исследование спектральных характеристик системы ИФАПЧ в режиме умножения частоты / Л.В. Ромашова, А.Н.Фомичев // Вопросы радиоэлектроники, сер. ОТ. - 2010. - Выпуск 1. - С. 23-28.

133. Drucker, Erik. Model PLL Dynamics and Phase-Noise Performance. /
 Erik Drucker // Microwaves & RF. - 2000. – № 2.

134. Ромашова, Л.В. Исследование фазовых шумов интегральных вычислительных синтезаторов со встроенным умножителем тактовой

частоты / Л.В. Ромашова // Вопросы радиоэлектроники, сер. РЛС. – 2011. вып. 1. - С.33 – 38.

135. Romashov, V.V. The mathematical model of noise characteristics of a direct digital synthesizer with the built-in multiplier of clock frequency on PLL / V.V. Romashov, L.V. Romashova, A.N. Doctorov // Proc. of the 2015 Int. Siberian Conf. on Control and Communications (SIBCON). – Omsk: Siberian Federal University. Russia, Omsk, May 21–23, 2015. IEEE Catalog Number: CFP13794-CDR. ISBN: 978-1-4799-1060-1. – Pp. 1080-1085.

136. Ромашова, Л.В. Анализ фазовых шумов формирователей сигналов на основе интегральных ЦВС с умножителем тактовой частоты на ФАПЧ / Л.В. Ромашова, А.Н. Докторов // Наука и образование в развитии промышленной, социальной и экономической сфер регионов России. IV Всероссийские научные Зворыкинские чтения: сб. тез. докл. Муром, 3 февр. 2012 г. – Муром: ИПЦ МИ ВлГУ, 2012. – С. 350-351.

137. Докторов, А.Н. Расчет фазовых шумов интегральных вычислительных синтезаторов частоты со встроенным умножителем тактовой частоты / А.Н. Докторов // Научный потенциал молодежи – будущее России: III Всероссийские научные Зворыкинские чтения: сб. тез. докл. Муром, 22 апр. 2011 г.– Муром: ИПЦ МИ ВлГУ, 2011.– С. 403-405.

138. Ромашов, В.В. Модель спектральной плотности мощности фазовых шумов цифровых вычислительных синтезаторов на образах основной частоты / В.В. Ромашов, Л.В. Ромашова, К.К. Храмов, А.Н. Докторов // Радиопромышленность. – 2012. - №2. – С.38 – 48.

139. Докторов, А.Н. Математическая модель спектральной плотности мощности фазовых шумов цифровых вычислительных синтезаторов в режиме образов основной частоты / А.Н. Докторов, В.А. Герасимова // Научный потенциал молодежи – будущее России. IV Всероссийские научные Зворыкинские чтения: сб. тез. докл. Муром, 20 апреля 2012 г.– Муром: ИПЦ МИ ВлГУ, 2012.– С. 395-396.

140. Ромашов, В.В. Моделирование шумовых характеристик новых интегральных цифровых вычислительных синтезаторов компании Analog Devices / В.В. Ромашов, Л.В. Ромашова, К.К. Храмов, А.Н. Докторов // Радиотехнические и телекоммуникационные системы. – 2013. - №2 – С.26-33.

141. Ромашов, В.В. Моделирование шумовых характеристик гибридных синтезаторов частот / В.В. Ромашов, Л.В. Ромашова, К.К. Храмов, А.Н. Докторов, К.А. Якименко // Радиотехнические и телекоммуникационные системы. – 2014. - №1 – С.5-20.

142. Ромашов, В.В. Моделирование шумовых характеристик новых интегральных цифровых вычислительных синтезаторов / В.В. Ромашов, А.Н. Докторов // Наука и образование в развитии промышленной, социальной и экономической сфер регионов России. V Всероссийские научные Зворыкинские чтения: сб. тез. докл. Муром, 1 февр. 2013 г.– Муром: ИПЦ МИ ВлГУ, 2013.– С.251-252.

143. Докторов, А.Н. Сравнение шумовых характеристик цифровых вычислительных синтезаторов на образах основной частоты / А.Н, Докторов // Научный потенциал молодежи – будущее России: V Всероссийские научные Зворыкинские чтения: сб. тез. докл. Муром, 22 апр. 2013 г.– Муром: ИПЦ МИ ВлГУ, 2012.– С. 322-323.

144. Ромашов, В.В. Измерение и математическое моделирование спектральной плотности мощности фазовых ШУМОВ цифрового вычислительного синтезатора / В.В. Ромашов, Л.В. Ромашова, А.Н. Докторов, К.А.Якименко // П27 Перспективные технологии в средствах передачи 11-ой информации: Материалы международной научно-технической конференции / Владим. гос. университет; редкол.: А.Г. Самойлов (и др). -Владимир: ВлГУ. 2015. – С.136-139.

145. Ромашов, В.В. Экспериментальная проверка моделей шумовых характеристик интегральных цифровых вычислительных синтезаторов компании Analog Devices / В.В. Ромашов, Л.В. Ромашова, А.Н. Докторов, К.А. Якименко// Радиотехнические и телекоммуникационные системы. – 2016. - №3 – С.15-24.

146. Ромашов, В.В. Экспериментальное исследование шумовых характеристик цифрового вычислительного синтезатора / В.В. Ромашов, А.Н. Докторов, Д.А. Хазов // Радиолокационная техника: устройства, станции, системы РЛС-2015. Тезисы докладов Третьей Всероссийской научно-практической конференции акционерного общества «Муромский завод радиоизмерительных приборов» - Муром, 9-10 июня 2015. – С.31-32.

147. Ромашов, В.В. Экспериментальное исследование спектральных характеристик гибридных синтезаторов частот / В.В. Ромашов, А.Н. Докторов, К.А. Якименко // Х Всероссийская конференция «Радиолокация и радиосвязь». Сборник трудов. – Москва, ИРЭ им. В.А. Котельникова РАН. – 21-23 ноября 2016 г. – С.118-121.

148. Ромашов В.В., Шумовые характеристики формирователей сигналов на основе цифровых вычислительных синтезаторов и умножителей частоты / В.В. Ромашов, Л.В. Ромашова, К.К. Храмов // Радиопромышленность. 2012, №2. С. 31 – 37.

149. Ромашов, В.В. Формирование сигналов в ОВЧ и УВЧ диапазонах при использовании метода прямого цифрового синтеза частот / В.В. Ромашов, К.К. Храмов // Радиотехника. – 2007. - №6. – С.39-42.

150. Докторов, А.Н. Исследование формирователей высокочастотных сигналов на основе цифровых вычислительных синтезаторов с использованием образов основной частоты / А.Н. Докторов, Д.А. Хазов // Научный потенциал молодежи – будущее России. IX Всероссийские научные Зворыкинские чтения: сб. тез. докл. Муром, 27 мар. 2017 г.– Муром: ИПЦ МИ ВлГУ, 2017.– С.347-349.

151. Докторов, А.Н. Исследование шумовых свойств формирователей сигналов с цифровыми вычислительными синтезаторами на образах основной частоты / А.Н. Докторов // Современные проблемы радиоэлектроники : сб. науч. тр. [Электронный ресурс] – Красноярск: СФУ, 2014. – 606 с. – 1 электрон. опт. диск.

152. Докторов, А.Н. Исследование шумовых характеристик формирователя сигналов на основе ЦВС с использованием образов частоты и дискретных умножителей частоты на транзисторах / А.Н. Докторов, И.В. Луценко // Научный потенциал молодежи – будущее России. IV Всероссийские научные Зворыкинские чтения: сб. тез. докл. Муром, 20 апреля 2012 г.– Муром: ИПЦ МИ ВлГУ, 2012. – С. 397-398.

153. Докторов, А.Н. Исследование фазовых шумов формирователей сигналов на основе интегральных ЦВС с умножителем тактовой частоты в режиме образов основной частоты / А.Н. Докторов // Научный потенциал молодежи – будущее России. IV Всероссийские научные Зворыкинские чтения: сб. тез. докл. Муром, 20 апреля 2012 г. – Муром: ИПЦ МИ ВлГУ, 2012. – С. 393-394.

154. Ромашов, В.В. Образы основной частоты ЦВС в гибридном методе синтеза / В.В. Ромашов, К.А. Якименко, А.Н. Докторов // Х Всероссийская конференция «Радиолокация и радиосвязь». Сборник трудов. – Москва, ИРЭ им. В.А. Котельникова РАН. – 21-23 ноября 2016 г. – 390 с.: ил. (156-160 с.).

155. Докторов, А.Н. Математическое моделирование шумовых характеристик радиосистем с цифровыми вычислительными синтезаторами на образах основной частоты / А.Н. Докторов // Научный потенциал молодежи – будущее России. VI Всероссийские научные Зворыкинские чтения: сб. тез. докл. Муром, 25 апр. 2014 г.– Муром: ИПЦ МИ ВлГУ, 2014.– С. 432-434

156. Докторов, А.Н. Формирователь высокочастотных гармонических сигналов с использованием образов основной частоты цифрового вычислительного синтезатора / А.Н. Докторов // 7-я Всероссийская конференция Радиоэлектронные средства получения, обработки и визуализации информации. РНТОРЭС имени А.С. Попова, Москва, Россия, 2017. – С. 54-58.

157. Докторов, А.Н. Фазовые шумы гибридных синтезаторов частот / А.Н. Докторов, К.А. Якименко // 15-я Международная конференция «Авиация

158

и космонавтика – 2016». 14–18 ноября 2016 года. Москва. Тезисы. – Типография «Люксор», 2016. – С.375-377.

# ПРИЛОЖЕНИЕ

## Акты внедрения результатов диссертационной работы

#### **УТВЕРЖДАЮ**

Первый заместитель директора Муромского института (филиала) ФГБОУ ВО «Владимирский государственный университет имени Александра Григорьевича и Николая

> Григоркевича Столетовых» А.Л. Жизняков

> > pelpans

2018

АКТ

« 1 »

Об использовании результатов диссертационной работы Докторова А.Н. «Формирователи высокочастотных сигналов с использованием копий спектра сигнала цифровых вычислительных синтезаторов», представленной на соискание ученой степени кандидата технических наук по специальности 05.12.04 – «Радиотехника, в том числе системы и устройства телевидения», в учебном процессе Муромского института (филиала) ФГБОУ ВО «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых

Мы, нижеподписавшиеся, начальник учебного отдела Педя Т.Н., заведующий кафедрой радиотехники д.т.н., профессор Ромашов В.В., заведующий лабораториями кафедры радиотехники Синев П.Г. составили настоящий акт в том, что результаты диссертационной работы Докторова А.Н. внедрены в учебный процесс на кафедре радиотехники:

- материалы диссертационной работы Докторова А.Н. используются при чтении лекций и проведении лабораторных работ по дисциплине «Цифровые синтезаторы частот» для магистрантов направления 11.04.01 «Радиотехника», «Радиопередающие устройства» для студентов направления 11.03.01 «Радиотехника»;

- разработанная математическая модель спектральной плотности мощности фазовых шумов цифровых вычислительных синтезаторов при использовании копий спектра выходного сигнала и программа частотного планирования формирователей когерентных сигналов (свидетельство о регистрации № 2015610107) используются при проведении лабораторных работ по курсу «Математическое моделирование радиотехнических устройств и систем» для магистрантов направления 11.04.01 «Радиотехника».

Т.Н. Педя Начальник учебного отдела Заведующий кафедрой радиотехники, В.В. Ромашов д.т.н. профессор Заведующий лабораториями кафедры радиотехники П.Г. Синев

160



## АКТ ВНЕДРЕНИЯ

результатов диссертационной работы Докторова Андрея Николаевича

«Формирователи высокочастотных сигналов с использованием копий спектра сигнала цифровых вычислительных синтезаторов», представленной на соискание ученой степени кандидата технических наук по специальности 05.12.04 – «Радиотехника, в том числе системы и устройства телевидения»

Научно-технический Совет отдела Главного конструктора Муромского завода РИП составил настоящий акт в подтверждение того, что теоретические и практические материалы кандидатской диссертационной работы Докторова А.Н., а именно:

 формирователи высокочастотных когерентных сигналов с использованием копий спектра сигнала цифровых вычислительных синтезаторов с уменьшением уровня фазовых шумов до 4-5 дБ и результаты их теоретических и практических исследований;

 алгоритм и программное обеспечение для автоматизации частотного планирования разработанных формирователей когерентных сигналов (свидетельство о регистрации № 2015610107);

 математическая модель спектральной плотности мощности фазовых шумов цифровых вычислительных синтезаторов при использовании копий спектра выходного сигнала

использованы на предприятии при проведении НИОКР по разработке формирователей сигналов разрабатываемых и модернизируемых радиосистем.

Главный конструктор

Заместитель главного конструктора

Н.В.Лаптев

Д.Д. Богатов

# Свидетельство о государственной регистрации программы для ЭВМ

